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Resumen
El	campo	de	los	vehículos	y	de	la	conducción	autónoma	se	en-
cuentra	 inmerso	en	un	rápido	crecimiento	y	expansión.	Por	ello,	
en el presente artículo se pretende diseñar un controlador predic-
tivo	que	sea	capaz	de	calcular	el	ángulo	de	dirección	óptimo	para	
poder	seguir	una	trayectoria	genérica,	además	de	realizar	trayec-
torias como el cambio de carril y el doble cambio de carril. Este 
tipo de controladores necesita un modelo interno que represente 
la	dinámica	longitudinal,	lateral	y	la	guiñada	con	precisión,	el	cual	
se	describe	mediante	un	conjunto	de	ecuaciones	diferenciales	de	
segundo	orden	que	especifica	dicho	comportamiento	dinámico.
A diferencia de otros tipos de controladores, el controlador predic-
tivo	requiere	de	la	resolución	de	un	problema	de	optimización	para	
obtener la acción de control. La función de coste característica de 
la	optimización	se	compone	de	un	conjunto	de	matrices	que,	en	su	
totalidad,	describen	el	comportamiento	del	controlador	predictivo.	
Se	destaca	la	importancia	de	recoger	el	comportamiento	dinámico	
del modelo en su forma matricial. Para ello, se debe someter al 
conjunto	de	ecuaciones	diferenciales	a	un	proceso	matemático	de	
linealización,	obteniendo	la	representación	en	espacio	de	estados	
del	modelo.	Una	vez	representado	en	su	forma	matricial,	se	cons-
truyen	el	resto	de	matrices	de	la	optimización	a	partir	de	estas.	
En la resolución del problema de seguimiento de trayectorias, es 
habitual	el	uso	de	modelos	de	vehículo	simplificados	que	asumen	
un	comportamiento	del	neumático	lineal,	en	el	que	las	fuerzas	la-
terales	y	longitudinales	de	estos	son	proporcionales	al	ángulo	de	
deriva.		
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Control predictivo basado en un modelo no lineal (NMPC), control 
predictivo basado en modelo (MPC), seguimiento de trayectorias (PT) y 
programación cuadrática (QP).

Abstract
The	 field	 of	 vehicles	 and	 autonomous	 driving	 is	 currently	
undergoing	 rapid	 growth	 and	 expansion.	 For	 this	 reason,	 the	
present	 article	 aims	 to	 design	 a	 predictive	 controller	 capable	
of	 calculating	 the	 optimal	 steering	 angle	 to	 follow	 a	 generic	
trajectory,	 as	 well	 as	 to	 perform	 manoeuvres	 such	 as	 lane	
changes or double lane changes. This type of controller requires 
an internal model that accurately represents the longitudinal, 
lateral,	 and	 yaw	 dynamics,	 which	 is	 described	 by	 a	 set	 of	
second-order differential equations that capture such dynamic 
behaviour.
Unlike	 other	 types	 of	 controllers,	 the	 predictive	 controller	
requires	solving	an	optimization	problem	to	obtain	the	control	
action.	 The	 cost	 function	 characteristic	 of	 the	 optimization	 is	
composed	of	a	set	of	matrices	 that,	as	a	whole,	describe	 the	
behaviour	 of	 the	 predictive	 controller.	 Emphasis	 is	 placed	 on	
capturing	the	dynamic	behaviour	of	the	model	in	its	matrix	form.	
To	achieve	this,	the	set	of	differential	equations	must	undergo	a	
mathematical	linearization	process,	resulting	in	the	state-space	
representation of the model. Once expressed in its matrix form, 
the	remaining	optimization	matrices	are	derived	from	it.
In	solving	the	trajectory	tracking	problem,	it	is	common	to	use	
simplified	vehicle	models	that	assume	linear	tire	behaviour,	in	
which	lateral	and	longitudinal	forces	are	proportional	to	the	slip	
angle. 
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INTRODUCCIÓN
Debido al incremento de la congestión 
del trá!co y al aumento de incidentes 
causados por una conducción impro-
pia, el interés por la implantación del 
vehículo autónomo en la sociedad ac-
tual se ha visto incrementado. En los 
últimos años, ha surgido un avance tec-
nológico en el campo de la conducción 
autónoma impulsado por su potencial 
para mejorar la seguridad, promover 
una conducción e!ciente en el consu-
mo de energía y optimizar el "ujo del 
trá!co (Urmoson et al.). Es por ello por 
lo que Qing Li analiza las necesidades 
del vehículo autónomo y presenta la 
arquitectura del sistema de control y la 
capacidad de detectar carriles de for-
ma automática (Li et al., 2004). Desde 
entonces, muchos investigadores han 
dedicado grandes esfuerzos a realizar 
avances en el desarrollo y el control 
del vehículo autónomo. Desde la pers-
pectiva de la detección de obstáculos, 
Häne es capaz de extraer la informa-
ción de obstáculos estáticos de mapas 
de profundidad calculados a partir de 
imágenes consecutivas (Häne et al., 
s.f.). Abdelmoghit Zaarane plantea un 
sistema de medición de distancia entre 
vehículos para conducción autónoma 
basado en el procesamiento de imáge-
nes, haciendo uso de cámaras estéreo 

y procesamiento de imagen (Zaarane 
et al., 2020). Desde la perspectiva del 
path planning, Huang propone el uso 
de un algoritmo RRT (Rapidly-explo-
ring Random Tree) para la plani!cación 
de rutas en un entorno complejo con 
un gran número de obstáculos aleato-
rios (Huang & Ma, 2022). Chao Chun 
Yuan presenta un nuevo algoritmo de 
fusión que combina el algoritmo de 
colonia de hormigas y un campo po-
tencial mejorado, lo que permite que el 
vehículo autónomo evite obstáculos y 
conduzca de manera más segura (Yuan 
et al., 2020).

En el área del control de vehículos 
autónomos, José E. Naranjo propone 
un sistema de adelantamiento para ve-
hículos autónomos equipado con capa-
cidades de seguimiento de trayectoria 
y cambio de carril. El sistema utiliza 
controladores difusos que imitan el 
comportamiento y las reacciones hu-
manas durante maniobras de adelan-
tamiento; se basa en la información 
proporcionada por un sistema de po-
sicionamiento global de gran precisión 
y un entorno de red inalámbrica (Na-
ranjo et al., 2008). Hamid presenta un 
novedoso método de control indirecto 
robusto y adaptativo basado en un en-
foque de red neuronal difusa de tipo 
2 con modo deslizante de tipo expo-

nencial, considerando incertidumbres 
paramétricas relacionadas con la ri-
gidez nominal en curva del vehículo, 
el coe!ciente de adherencia neumáti-
co-carretera, los parámetros inerciales 
y la velocidad de avance (Taghavifar 
& Rakheja, 2019). Teniendo en cuenta 
el con"icto existente entre precisión 
de seguimiento y la estabilidad bajo 
condiciones extremas de conducción, 
Tchamna promueve un nuevo enfoque 
para controlar la tasa de guiñada y el 
deslizamiento lateral de un vehículo, 
sin descuidar su dinámica longitudinal 
y sin realizar suposiciones simpli!ca-
doras sobre su movimiento (Tchamna 
y Youn, 2013). Kibeom Lee propone 
un control lineal cuadrático gaussiano 
(LQG) para diseñar de manera e!-
ciente y sistemática el controlador de 
seguimiento de trayectoria, al mismo 
tiempo que maneja e!cazmente los 
problemas de ruido y error que sur-
gen de los algoritmos de localización 
y plani!cación de trayectorias (Lee et 
al., 2019). Hay multitud de técnicas y 
algoritmos para realizar el control so-
bre el movimiento del vehículo, pero 
todos están enfocados en mejorar la 
precisión y la estabilidad del control. 
Más allá de estos controladores, el 
control predictivo basado en modelo 
destaca por su capacidad para manejar 
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sistemas complejos y dinámicos, opti-
mizando el control mientras respeta 
las restricciones operativas del vehícu-
lo (Yu et al., 2021), convirtiéndolo en el 
algoritmo de control más empleado a 
la hora de resolver los problemas de se-
guimiento de trayectorias en vehículos 
autónomos.

Primeramente, Falcone (2007) de-
!ende la implementación de un con-
trolador predictivo para controlar un 
sistema de dirección activa en el eje 
delantero de un vehículo autónomo. 
Este compara dos enfoques con dife-
rentes costes computacionales: el uso 
de un modelo no lineal de elevada 
complejidad del vehículo, sujeto a un 
proceso de linealización en cada itera-
ción, y un modelo de menor compleji-
dad cuyos parámetros varían de forma 
lineal. Este último tiene en cuenta el 
estado del vehículo y las restricciones 
para garantizar la estabilidad a grandes 
velocidades y en super!cies con poca 
adherencia. Posteriormente, Falcone 
et al. (2008) presentan un esquema de 
seguimiento de trayectoria basado en 
control predictivo por modelo (MPC) 
para realizar maniobras de evasión de 
obstáculos mediante la optimización 
del ángulo de la dirección y el control 
de la aceleración o el frenado. Cheng 
(2021) diseña un controlador de segui-
miento de trayectoria robusto basado 
en MPC, capaz de hacer frente a in-
certidumbres en los parámetros. Este 
controlador incorpora un algoritmo 
novedoso que puede resolverse me-
diante un conjunto de desigualdades 
matriciales lineales (LMI), derivadas 
del principio de estabilidad asintóti-
ca de Lyapunov. Más tarde, Cheng et 
al. (2021) proponen un algoritmo de 
control predictivo adaptativo, el cual 
calcula los parámetros característicos 
del controlador en función del estado 
del vehículo y de las condiciones del 
trazado. En la mayoría de los artículos 
previamente citados, muchos autores 
optan por emplear el modelo lineal 
de bicicleta, el cual ayuda a reducir el 
coste computacional y muestra gran 
precisión siempre y cuando se trabaje 
en la zona lineal del neumático. Sin 
embargo, en maniobras extremas y 
en super!cies de baja adherencia, este 
controlador presenta limitaciones. Por 
ello, en el presente artículo se diseña 
un algoritmo de control predictivo ba-
sado en el modelo no lineal de Dugo-
ff, el cual, mediante una formulación 

matemática más simple que otros mo-
delos de neumático como el de Pacjec-
ka, puede reproducir con precisión el 
comportamiento real del neumático.

MODELO DINÁMICO DEL 
VEHÍCULO

Modelo de bicicleta
La resolución del problema de segui-
miento de trayectorias (PT) depende 
en gran medida del modelo de vehí-
culo empleado, ya que es un requisi-
to indispensable para la estrategia de 
control utilizada. Los vehículos son 
sistemas muy complejos, con múltiples 
grados de libertad y una gran cantidad 
de parámetros que varían de forma 
no lineal con el tiempo. Debido a esta 
complejidad, resulta extremadamen-
te difícil desarrollar un modelo capaz 
de capturar, en su totalidad, todas las 
características del vehículo. Además, 
emplear un modelo tan detallado im-
plicaría un aumento signi!cativo en el 
costo computacional, lo que di!culta-
ría su implementación en el control en 
tiempo real. Por ello, es esencial utili-
zar un modelo dinámico simpli!cado 
cuyos parámetros puedan adaptarse 
con el tiempo, manteniendo un equi-
librio entre precisión y viabilidad com-
putacional. Este enfoque permite un 
buen seguimiento de la trayectoria en 
tiempo real sin comprometer el rendi-
miento.

En este apartado, se introduce el 
modelo de vehículo y de neumático 
empleado para el control basado en el 
espacio de estados. Dicho modelo debe 

ser capaz de describir la dinámica plana 
del automóvil, y es necesario describir 
mediante ecuaciones los movimientos 
longitudinales, laterales y de rotación. 
Se selecciona el modelo de bicicleta 
con tres grados de libertad para mode-
lizar la dinámica plana de vehículos sin 
considerar la geometría de Ackerman. 
Este es una representación simple y 
efectiva que se utiliza ampliamente 
en los controles de estabilidad y tra-
yectoria de vehículos autónomos (Lin, 
Sun, Wu, y Qian, 2021). Este artículo 
demuestra cómo aplicando dicho mo-
delo simpli!cado, que incluye la rigi-
dez de los neumáticos, puede lograrse 
un seguimiento preciso y suave de la 
trayectoria de referencia. El modelo es 
e!caz incluso en condiciones difíciles 
que involucran movimientos laterales, 
longitudinales y de giro del vehículo. 
Para poder aplicar este modelo, se de-
ben considerar las siguientes simpli!-
caciones:
• Las ruedas del mismo eje se agrupan 

en una sola rueda ubicada en el cen-
tro del eje delantero o trasero.

• El peso del cuerpo del vehículo se 
distribuye en cada rueda.

• Efectos como los movimientos de 
la suspensión, fenómeno de desliza-
miento y los efectos de la aerodiná-
mica son despreciados.

• Se ignoran efectos como la relación 
de acoplamiento de la fuerza del 
neumático y el efecto del par de ali-
neación.

La representación del modelo en un 
sistema de coordenadas plano puede 
visualizarse en la !gura 1.

Marc Sánchez-Mateu, Daniel S. Gamba, J Pérez-Fernández, JA Cabrera Carrillo, JJ Castillo-Aguilar

Figura 1. Modelo de bicicleta de tres grados de libertad.
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De acuerdo con la Segunda Ley de 
Newton y Euler, el equilibrio de fuer-
zas y momentos resultante a lo largo de 
los ejes x, y y z locales cuya referencia 
está centrada en el centro de gravedad 
del vehículo es el siguiente:

 (1)
 (2)

  (3)
donde m es la masa del vehículo,  
y  son las fuerzas longitudinales de 
las ruedas delantera y trasera respecto 
del eje local x.  y  son las fuerzas 
laterales sobre los delantero y trasero, 
calculadas respecto del eje local y. La 
inercia del vehículo respecto del eje z 
viene representada por el parámetro .

Las fuerzas de los neumáticos de-
lantero y trasero obtenidas en las di-
recciones x e y se relacionan con las 
fuerzas longitudinales y laterales de 
estos. La relación es la siguiente [1]:

 (4)

En la fórmula (4),  y  son las 
fuerzas longitudinales de las ruedas 
delantera y trasera,  y  son las 
fuerzas laterales de ambas ruedas (de-
lantera y trasera). Los ángulos de di-
rección delantero y trasero se repre-
sentan como  y  respectivamente. 
Se asume que el modelo de vehículo 
seleccionado solo tiene dirección en la 
rueda delantera, lo que resulta en que 

=0. Además, si se desprecia el efecto 
de transferencia de carga y asumiendo 
que la velocidad del vehículo cambia 
lentamente, las cargas verticales del 
neumático delantero y trasero puede 
calcularse (Chen et al., 2013):

          (5)

      (6)

Las fuerzas longitudinal y lateral 
del neumático puede expresarse como 
una función compleja del ángulo de 
deriva del neumático  ángulo de des-
lizamiento longitudinal del neumático 
s y la fuerza vertical , además de otros 
parámetros que se comentarán con 
más detalle posteriormente:

      (7)
      (8)

Además, los ángulos de deriva trasero 
y delantero pueden calcularse aplican-
do la siguiente ecuación:

      (9)

    (10)

En la fórmula,  y  son los án-
gulos de deslizamiento de las ruedas 
delanteras y traseras, respectivamente, 

 e  son las velocidades longitudinal 
y lateral del vehículo,  es la tasa de 
variación del ángulo de guiñada y 
, el ángulo de dirección de la rueda 
delantera. Con el !n de minimizar el 
coste computacional para el modelo 
simpli!cado, se asume la hipótesis de 
pequeños ángulos de deslizamiento. 
Se traduce en una simpli!cación en las 
funciones trigonométricas que apare-
cen en las ecuaciones que describen la 
dinámica del modelo de bicicleta de la 
!gura 1. Se da la siguiente condición:

   (11)
Las ecuaciones (1)-(8) derivan del 

sistema de coordenadas local centrado 
en el cuerpo del vehículo. Hay una re-
lación entre el sistema de coordenadas 
!jo en el cuerpo y el sistema de coor-
denadas inercial X,Y:

    (12)
    (13)

Donde X es la posición longitudinal 
en el sistema de referencias inercial e 
Y es la posición lateral en el sistema de 
coordenadas inercial.

Modelo	de	neumático	no	lineal.	
Modelo de Dugoff
Para conseguir una reducción en el 
coste computacional de los cálculos, es 
muy habitual encontrar algoritmos de 
control en los que se asume la hipótesis 
de pequeños ángulos de deslizamien-
to descrito en la ecuación (9). Cuando 
dicha hipótesis es cierta y los ángulos 
de deslizamiento longitudinal y lateral 
son pequeños, las fuerzas que actúan 
sobre el neumático pueden aproximar-
se linealmente como:

      (14)

En la ecuación (12),  es la rigidez 
longitudinal del neumático y  es su 
rigidez lateral. El uso de dicha ecua-
ción tiene limitado el rango de aplica-
ción, ya que solo es viable su uso para 
aceleraciones laterales  menores de 
0,3-0,4 g y condiciones de adheren-

cia normales y no cerca de la pérdida 
de tracción. En caso de sobrepasar el 
límite de la aceleración lateral o si el 
vehículo circula en super!cies de baja 
adherencia, las fuerzas laterales y lon-
gitudinales que se calculan en el mo-
delo interno del controlador pueden 
inducir cierto error. Empíricamente, 
se ha observado que, en caso de so-
brepasar dichas limitaciones, el incre-
mento de las fuerzas en el neumático 
es más lento con el ángulo de deriva 
longitudinal y lateral, perdiendo la li-
nealidad. Por ello, las fuerzas calcula-
das bajo la hipótesis lineal de pequeños 
deslizamientos serían mayores que la 
fuerza bajo condiciones reales, lo que 
introduce una discrepancia en el mo-
delo interno del controlador y afecta 
el rendimiento del controlador. Para 
hacer el controlador más preciso y 
versátil, se implementa un modelo de 
vehículo basado en el modelo de neu-
mático no lineal de Dugoff (Gao et al., 
2024.), reemplazando el coe!ciente de 
rigidez constante de la ecuación (12) 
por un coe!ciente corregido no lineal, 
el cual permite capturar el comporta-
miento real del neumático bajo condi-
ciones que favorecen la pérdida de pro-
porcionalidad entre el deslizamiento y 
la fuerza. La expresión que se usa para 
el cálculo de este nuevo coe!ciente de 
rigidez no lineal es:

    (15)

 es el parámetro de de"exión 
del neumático, el cual otorga al mode-
lo interno la capacidad de reproducir 
el comportamiento del neumático con 
mayor rigor, involucrando los rangos 
de trabajo en los que se pierde la linea-
lidad debido a los factores descritos en 
el párrafo anterior. Este se calcula apli-
cando la siguiente fórmula:

   (16)

    (17)

 es el coe!ciente de adherencia, 
 es la carga vertical sobre el neu-

mático,  es el valor de referencia del 
coe!ciente de rigidez longitudinal del 
neumático y  es el valor de referen-
cia de rigidez lateral.  y  son sus 
ángulos de deslizamiento longitudinal 
y lateral. El índice i indica la dirección 
de la fuerza (x o y) y el índice j la rueda 
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en la que se aplica la fuerza (delantera 
o trasera). En las ecuaciones, la rueda 
delantera se asocia con la letra f, que 
deriva del inglés front. Para la rueda 
trasera, se hace uso de la letra r, en 
inglés rear. Una vez calculados los pa-
rámetros de rigidez longitudinal y la-
teral, pueden obtenerse las fuerzas la-
teral y longitudinal de forma sencilla:

    (18)

    (19)

En la !gura 2 puede verse la evo-
lución del nuevo coe!ciente de rigidez 

 frente al ángulo de deslizamiento 
del neumático  a distintos valores 
de coe!ciente de fricción . Para án-
gulos de deslizamiento pequeños (0-2 
grados), dicho coe!ciente presenta un 
comportamiento lineal, lo que hace 
que la fuerza lateral varíe también li-
nealmente. De este modo, se valida la 
hipótesis de proporcionalidad plan-
teada inicialmente. Por otro lado, en 
dicha !gura también se aprecia que, 
a partir de ángulos de deslizamiento 
más elevados, por encima de 2 grados 
aproximadamente, el valor que toma el 
coe!ciente de rigidez propuesto dis-
minuye de forma no lineal y captura la 
variación no uniforme tan caracterís-
tica del neumático (Gao et al., 2024.). 
Este cambio en la rigidez no solo re-
"eja la capacidad del neumático para 
mantener la adherencia a altas veloci-
dades o en condiciones extremas, sino 
también la forma en que las caracte-
rísticas del material y la estructura del 
neumático in"uyen en su rendimiento 
bajo diferentes condiciones de carga y 
deslizamiento. Bastaría con aplicar las 
fórmulas (18) y (19) para obtener el va-
lor de las fuerzas longitudinal y lateral 
para su respectivo coe!ciente de rigi-
dez ajustado .  

En la !gura 3 puede visualizar-
se que, ante un determinado valor de 
carga vertical de 4.120 N, la in"uencia 
del coe!ciente de fricción  sobre las 
fuerzas laterales a las que se puede ver 
sometido el neumático. El propio valor 
del coe!ciente de rodadura determi-
na el límite de deslizamiento de este. 
Cuanto más grande sea el valor de di-
cho coe!ciente, mayor es la rigidez del 
neumático (v. Fig. 2) y, por consiguien-
te, mayor es el valor pico de la fuerza 
lateral. El valor de rigidez constante  
empleado para realizar los cálculos del 

modelo de Dugoff de las ecuaciones 
(15)-(17) y que permite la representa-
ción de las !guras 2 y 3 es de 48.400 
N/º. Este es un valor representativo 
para simular el comportamiento del 
neumático ante condiciones típicas de 
carga y deslizamiento.

Puede verse en las ecuaciones (18) y 
(19) que la fuerza lateral es solo depen-
diente del ángulo de deslizamiento la-
teral y que la fuerza longitudinal lo es 
del deslizamiento longitudinal. Por lo 
que sustituyendo dichas ecuaciones en 
las ecuaciones (1)-(3), se puede obtener 
el modelo de bicicleta no lineal basado 
en Dugoff:

       (20)
       (21)

       (22)
       (23)

       (24)
       (25)

DISEÑO DEL CONTROLADOR 
PREDICTIVO BASADO EN 
MODELO

Algoritmo de control propuesto
El controlador predictivo basado en 
modelo (MPC) es una estrategia de 
control avanzado que utiliza un mo-
delo matemático discreto del sistema 
para prever su comportamiento futuro 
y determinar las acciones de control 
óptimas. Este enfoque se basa en la 
de!nición de dos horizontes clave: el 
horizonte de predicción  y el hori-
zonte de control . El horizonte de 
predicción es el intervalo de tiempo 
en el que el controlador anticipa la di-
námica futura del sistema, evaluando 
el impacto de las posibles acciones de 
control sobre las salidas del sistema. 
Por otro lado, el horizonte de control 
corresponde a la porción del horizonte 
de predicción en la que se optimizan 
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Figura 2. Efecto de la de fricción  y del ángulo de deslizamiento  sobre el coeficiente de rigidez .

Figura 3. Efecto de la de fricción  y del ángulo de deslizamiento  sobre la fuerza lateral del neumático .

Técnica Industrial, noviembre 2025, 342: 22-32 | doi: 10.23800/10570

Marc Sánchez-Mateu, Daniel S. Gamba, J Pérez-Fernández, JA Cabrera Carrillo, JJ Castillo-Aguilar



27

y se aplican las acciones de control, 
usualmente limitado para simpli!car 
el problema y para evitar elevados cos-
tes computacionales.

El principio fundamental del MPC 
consiste en resolver, en cada instante 
de tiempo, un problema de optimi-
zación que minimiza una función de 
coste, la cual combina los errores entre 
las salidas predichas y las referencias, 
así como los esfuerzos de control. Este 
cálculo se realiza bajo las restricciones 
físicas y operativas del sistema, como 
límites en los estados, salidas y entra-
das. Solo se aplica la primera acción de 
control de esta secuencia, y el proceso 
se repite en el siguiente paso, actua-
lizando el modelo con las mediciones 
más recientes. La estructura del con-
trolador puede verse en la !gura 4.

El primer elemento importante es 
el generador de referencias, el cual, 
en función de la posición y velocidad 
estimada del vehículo, obtendrá para 
cada instante de tiempo , el conjunto 
de puntos que sirven como referencia 
durante todo el horizonte de predic-
ción de!nido en el controlador. Otro 
elemento importante para destacar es 
el modelo de neumático de Dugoff. 
Tomando los ángulos de deslizamien-
to  y  como entrada, calcula in-
ternamente los coe!cientes de rigidez 
no lineal  y . El controlador, 
tomando los nuevos coe!cientes de ri-
gidez, actualiza el modelo interno del 
vehículo y predice el comportamiento 
de este a lo largo del horizonte de pre-
dicción. Finalmente, una vez predicho 
el comportamiento, se compara con el 
conjunto de puntos de la referencia y 
se obtiene la acción de control óptima. 
Esta última es el ángulo de dirección 
del vehículo.

Modelo empleado para la 
predicción

La discretización es un proceso 
esencial para el desarrollo de algo-
ritmos de control de tipo predictivo, 
ya que estos emplean un modelo dis-
creto del sistema dinámico interno 
para realizar la predicción sobre el 
comportamiento futuro de este. Es 
necesario representar en espacio de 
estados las ecuaciones (20)-(25). Para 
ello, seleccionamos como variables 
de estado la posición longitudinal x, 
la velocidad longitudinal , la posi-
ción lateral y, la velocidad lateral 
, el ángulo de rotación de vehículo 

(ángulo de guiñada) , la variación 
del ángulo , la desviación lateral Y y 
la desviación longitudinal X. El con-
junto de variables de estado se agrupa 
de forma matricial, de!niendo lo que 
se conoce como vector de estados x=

. En las ecuaciones 
(20)-(23) se observa que el sistema 
también depende de la variable del 
ángulo de dirección . En sistemas 
de control aplicado al seguimiento de 
trayectorias, es muy habitual elegir 
como variable de control .

La forma general de representar la 
ecuación de estado es la siguiente: 

    (26)
La variable de estado y la variable 

de control del vehículo de referen-
cia satisface, para cualquier instante 
de tiempo, la ecuación de arriba. El 
subíndice r representa la variable de 
referencia:

    (27)
El paso previo a la discretización 

es la linealización del sistema de!ni-
do en la ecuación (26). Para ello, se 
realiza una expansión en series de 
Taylor alrededor de cualquier punto 
de referencia de la trayectoria, ig-
norando los términos de alto orden 
(Gao et al., 2024.):

   (28)

Si se restan las ecuaciones (28) y 
(27) se obtiene:

    (29)

Donde las matrices  y  se 
conocen como matrices jacobianas, y 
representa las derivadas parciales de 
una función respecto de sus variables 
independientes. Estas variables de es-
tado se agrupan dentro del vector de 
estados  y la variable de control . 
Analíticamente, estas matrices se cal-
culan:

              (30)

              (31)
 

Figura 4. Bucle de control del MPC
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Los términos de la matriz  y 
 son:

               (32)

La fórmula (29) representa una 
ecuación de espacio de estados conti-
nua en el tiempo. Para su implemen-
tación en el algoritmo de control, esta 
debe discretizarse, ya que el MPC 
requiere de un modelo en espacio de 
estados discreto para poder realizar la 
predicción. Hay multitud de métodos 
de discretización de ecuación, cada 
uno con sus ventajas y desventajas en 
cuanto a los requisitos computacio-
nales, precisión del seguimiento de 
la trayectoria, etc. (Gao et al., 2024.). 
En el presente artículo, se propone el 
método de discretización de Euler, que 
permite representar las matrices del 
sistema continuas  y  en su 
forma discreta:

        (33)

 es el tiempo de muestreo e , la 
matriz identidad cuya dimensión debe 
ser coincidir con la de la matriz 
. En este caso es una matriz 6×6. Una 
vez realizada la discretización, el nue-
vo modelo en espacio de estados que se 
obtiene es:

  (34)

Ya que la variable de control es el 
ángulo de dirección de la rueda de-
lantera , para poder asegurar un 
funcionamiento normal del vehículo y 

prevenir cambios repentinos en dicho 
ángulo, es crucial limitar el incremen-
to del ángulo de dirección. Con este 
propósito, la ecuación (34) se transfor-
ma a su representación en forma de in-
crementos de la acción de control (Gao 
et al., 2024.). Esta reformulación per-
mite que el sistema controle directa-
mente los cambios en el ángulo, lo que 
es esencial para mantener una conduc-
ción suave y predecible, especialmente 
en escenarios en los que el comporta-
miento dinámico del vehículo puede 
verse afectado por variaciones rápidas:

   (35)

En la fórmula: 
En el algoritmo propuesto, la refe-

rencia del controlador es el conjunto 
de puntos de la trayectoria objetivo, 
los cuales están de!nidos en el plano 
mediante su posición en , en  y el án-
gulo de rotación respecto al punto an-
terior . Con el propósito de realizar 
el seguimiento del camino objetivo, las 
salidas del controlador serán aquellas 
que permiten ubicar el vehículo en el 
plano, y son: la posición longitudinal 
del vehículo en coordenadas globales 
X, la posición lateral en coordenadas 
globales Y y la rotación del vehículo o 
ángulo de guiñada . De esta manera, 
el MPC calculará la acción de control 
óptima que minimice el error existen-
te entre la posición actual del vehículo 
y la trayectoria. En otras palabras, el 
objetivo es reducir la distancia entre 
el vehículo y la trayectoria conforme 
avanza la simulación [16]. Según los 
fundamentos de la representación de 
sistemas en espacio de estados, las sa-
lidas pueden obtenerse mediante la si-
guiente operación matricial:

     (36)

Por lo que combinando las ecuacio-
nes (35) y (36), se obtiene el modelo 
completo en espacio de estados discre-
to:

    (37)

Cálculo	de	la	salida	en	el	dominio	
temporal de la predicción
Se asume que el horizonte de predic-
ción  es mayor que el horizonte de 
control . Basándose en la ecuación 
(37), se estima que se aplicarán  in-
crementos de control durante el hori-

zonte de control del sistema. Cuando 
el tiempo  se encuentra en el horizon-
te de control, al pasar del horizonte de 
control al horizonte de predicción, la 
cantidad de control aplicada al sistema 
permanece constante y el incremento 
de la acción de control es 0. Tras rea-
lizar la derivación, se puede obtener la 
expresión de salida predicha del siste-
ma (Gao et al., 2024.):

    (38)

En la fórmula es:

Definición	de	la	función	de	coste	
objetivo
Como se comenta anteriormente, el 
MPC necesita de una función de cos-
te que optimizar para calcular el valor 
óptimo de la acción de control. De esta 
manera, para garantizar que el vehícu-
lo autónomo sea capaz de seguir una 
trayectoria de referencia con precisión 
y de forma estable, es necesario opti-
mizar el error existente entre la refe-
rencia y la posición del vehículo esti-
mada y la acción de control. Se lleva 
a cabo la optimización del error a lo 
largo del horizonte de predicción  y 
la de la acción de control a lo largo del 
horizonte de control . Además, es 
necesario restringir el incremento en 
la acción de control en cada periodo de 
muestreo, evitando variaciones brus-
cas y oscilaciones. Por consiguiente, 
re!riéndose al método de restricciones 
suaves utilizado en la literatura [18], la 
forma seleccionada de la función obje-
tivo es la siguiente:

  (39)
En la fórmula,  es el coe!ciente 

de ponderación del factor de relaja-
ción de las restricciones .  y  son 
las matrices de pesos de la salida y de 
la variable de control, respectivamen-
te. El primer término de la ecuación 
representa la acumulación del error 
existente entre la salida del sistema y 
la referencia de dicha salida. Es decir, 
captura la desviación entre ambas va-
riables re"ejando la capacidad de se-
guimiento de la trayectoria objetivo. 
El segundo término hace referencia a 
la acumulación de desviaciones de la 
variable de control. Re"eja el requisito 
de cambio uniforme en dicha variable. 
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El tercer término garantiza que haya 
una solución óptima factible al reali-
zar cambios en tiempo real.  
es el valor predicho de la salida para el 
tiempo discreto  en el tiempo futu-
ro  es el valor de 
referencia de la salida para el tiem-
po discreto  en el tiempo futuro 

 es la secuencia del 
futuro de la variable de control.

Las matrices de pesos  y  se cal-
culan del siguiente modo:

Realizando las operaciones necesa-
rias para transformar el problema de 
optimización genérico de!nido por la 
función de coste  de la ecuación (39) 
en su representación matricial[18], se 
obtiene la formulación típica de un 
problema de optimización cuadrática 
QP:

     (40)

La matriz  es la matriz hes-
siana,  es el vector del gradiente 
lineal,  es el vector de variables de 
decisión y  es el vector de térmi-
nos independientes. El cálculo de estas 
matrices puede verse a continuación:

Restricciones del problema de 
optimización
En algoritmos de control de tipo pre-
dictivo, es necesario imponer ciertas 
restricciones que deben cumplirse 
durante la resolución del problema de 
optimización de!nido por la ecuación 
(40). Generalmente, se de!nen restric-
ciones en la propia variable de control 
y en su incremento y en las salidas. En 
escenarios reales de conducción, el án-
gulo de dirección tiene un rango limi-
tado de giro, por lo que se debe tener 
en cuenta dicha limitación a la hora de 
diseñar el controlador. Al mismo tiem-
po, para tener en cuenta la estabilidad 
del vehículo al realizar el seguimiento 
de la trayectoria, también se debe limi-
tar el incremento de la variable de con-
trol. Además, para evitar desviaciones 
excesivas del camino de referencia, se 
debe limitar también el valor máximo 
y mínimo de la posición longitudinal, 
lateral y del ángulo de guiñada.

Dicho lo cual, las restricciones im-
puestas al valor máximo y mínimo de 
la acción de control:

    (41)

 es el valor mínimo de la va-
riable de control y  es el valor 
máximo. Se imponen también restric-
ciones al incremento de la variable de 
control:

  (42)
 es el valor mínimo del in-

cremento de control y  es el 
valor máximo del incremento. E impo-
niendo restricciones a las salidas:

   (43)

 es el valor mínimo de la sa-
lida e y  es el valor máximo de 
esta.

SIMULACIÓN
Para validar el rendimiento del con-
trolador MPC no lineal propuesto, se 
realizan diversos escenarios de simu-
lación en el entorno de Matlab/Simu-
link. Estos escenarios incluyen manio-
bras típicas como el doble cambio de 
carril y el camino sinusoidal. Además, 
las pruebas se llevan a cabo tanto a 
velocidad constante como a velocidad 
variable, lo que permite analizar el 
efecto de la aceleración longitudinal 
en el control. Por último, se plantea 
un escenario que considera un trazado 
complejo, compuesto por segmentos 
rectos y curvos, ejecutado a velocidad 
constante.

Parámetros	de	la	simulación
Los parámetros mecánicos del vehícu-
lo empleado para realizar las diferentes 
simulaciones se recogen en la tabla 1.

En línea con [18], las restricciones 
que se imponen a la variable de control 
y a la variación de esta son:

      (44)

 
Escenario	1:	simulación	a	veloci-
dad	constante	baja	y	coeficiente	
de	adherencia	elevado
Se propone estudiar la precisión del 
controlador ante un escenario de velo-
cidad del vehículo constante y la ma-
niobra de referencia es el doble cambio 
de carril. Esta maniobra se usa amplia-
mente en ensayos en los que se mide 
la estabilidad y la maniobrabilidad del 
vehículo.

El controlador propuesto se basa en 
el modelo no lineal de neumático de 
Dugoff, el cual, partiendo de un coe-
!ciente rigidez de referencia,  
para el neumático delantero y  
para el neumático trasero, obtiene un 
nuevo coe!ciente de rigidez  no 
lineal que tiene en cuenta rangos de 
trabajo del neumático en los que se 
pierde la proporcionalidad entre la 
fuerza y el ángulo de deslizamiento. 
Para re"ejar el rendimiento de este 
primer controlador no lineal NMPC, 
se compara con un controlador MPC 
convencional. Este no considera la re-
gión no lineal del neumático y está di-
señado bajo la simpli!cación de coe!-
ciente de rigidez lateral y longitudinal 
constante. En la tabla 2 se recogen los 

Parámetros Valor (unidades)

Masa del vehículo 

Inercia rotacional del vehículo

Distancia entre ejes

Distancia desde el centro de gravedad  
al eje delantero

Distancia desde el centro de gravedad  
al eje trasero

Coeficiente de rigidez lateral del  
neumático delantero

Coeficiente de rigidez lateral  
del neumático trasero

Coeficiente de rigidez longitudinal  
neumático delantero

Coeficiente de rigidez longitudinal  
neumático trasero

Tabla 1. Parámetros del vehículo

Diseño y validación de un controlador predictivo no lineal basado en un modelo aplicado al seguimiento de trayectorias de vehículos autónomos
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parámetros del controlador para este 
escenario de simulación:

En la !gura 5 puede observarse la 
efectividad que tienen ambos contro-
ladores para seguir la referencia de po-
sición lateral. Bajo unas condiciones de 
adherencia elevada =0,9 y velocidad 
baja = 36 km/h, ambos controladores 
muestran una gran exactitud a la hora 
de seguir la trayectoria. Pero, al !jar-
se en el detalle de la zona remarcada, 
puede verse que el controlador NMPC 
muestra mayor precisión y consigue 
que la trayectoria que describe el ve-
hículo controlado esté más próxima a 
la de la referencia. Esta diferencia de 
rendimiento entre ambos controlado-
res se acentúa en las zonas en las que 
la curvatura es mayor, hasta alcanzar 
ángulos de deslizamiento más elevados 
y acercándose a la zona de trabajo no 
lineal del neumático. Aunque en di-
chas condiciones de trabajo se puede 
suponer que las fuerzas sobre los neu-
máticos son constantes, el controlador 
NMPC puede describir con mayor 
rigor las fuerzas sobre los neumáticos 
que el controlador lineal MPC. Mues-
tra, por consiguiente, mayor capacidad 
de seguimiento de la referencia.

En la !gura 5a, se representa el án-
gulo de guiñada de referencia que debe 
seguir el vehículo para poder seguir la 
trayectoria con la mayor precisión y 
estabilidad. Se observa que el ángulo 
que describe el vehículo controlado 
por el NMPC está más próximo al án-
gulo objetivo en prácticamente todo 
el trazado. Resalta esta discrepancia 
en las zonas en las que la curvatura es 
mayor y se alcanzan mayores ángulos 
de deslizamiento. En la !gura 5b-d se 
describen el ángulo de la dirección, el 
de deslizamiento del vehículo y el de 
deslizamiento del neumático delantero 
del controlador NMPC y del contro-
lador MPC, que son parecidos, ya que 
la magnitud y la forma que describen 
es parecida. Aunque justamente las pe-
queñas "uctuaciones existentes entre 
ambos controladores se dan en el ran-
go de 6-8 segundos, cuando se ejecuta 
la última curva de la maniobra. Una 
vez superada dicha zona, se observa 
que las oscilaciones se van atenuando 
con el tiempo, y son mayores las del 
MPC, lo que también demuestra una 
peor capacidad de corregir el error en 
el régimen permanente. En de!nitiva, 
el rendimiento de ambos controladores 
es muy parecido, ya que ambos pueden 

seguir la trayectoria con precisión y 
"uidez, aunque queda demostrado que 
en zonas en las que se alcanzan mayo-
res aceleraciones laterales y mayores 
ángulos de deslizamiento, el controla-

dor NMPC se ajusta mejor, debido a 
su capacidad de modelizar con mayor 
precisión el comportamiento del neu-
mático.

Parámetros	del	controlador Valor  
(unidades)

Parámetros	del	
ensayo Valor (unidades)

Periodo de muestreo Velocidad del 
vehículo

Horizonte de predicción Coeficiente de 
adherencia

Horizonte de control

Coeficiente de ponderación posición 
longitudinal

Coeficiente de ponderación posición 
lateral

Coeficiente de ponderación ángulo 
guiñada

Coeficiente de ponderación de la 
variable de control

Tabla 2. Parámetros del controlador y características del escenario 1
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Escenario	2:	simulación	a	velo-
cidad	constante	elevada	y	coefi-
ciente de adherencia alto
En el escenario 1 se ha demostrado 
que, ante unas condiciones de favo-
rables, ambos controladores exhiben 
una elevada precisión a la hora de 
realizar el seguimiento del camino de 
referencia. Es ligeramente superior el 
NMPC. En el presente escenario, se 
eleva la velocidad a =20 m/s y se man-
tiene el coe!ciente de adherencia a 
=0,9. La maniobra que se ejecuta sigue 
siendo el cambio de carril. Los contro-
ladores que se comparan siguen sien-
do los mismos, un NMPC basado en 
el modelo de Dugoff de neumático y 
un MPC clásico lineal. Se debe imple-
mentar unos cambios en los paráme-
tros del controlador. En la tabla 3 se 
recogen los parámetros de los contro-
ladores y del ensayo:

Al haberse incrementado la veloci-
dad longitudinal al doble que en el es-
cenario 1, la capacidad global de seguir 
la referencia de ambos controladores 
disminuye. En la !gura 6 se observa 
que ninguno de los controladores pue-
de seguir la referencia lateral con su!-
ciente exactitud, y es el NMPC el que 
muestra mayor precisión. Esto puede 
verse en el tramo entre 25 y 60 metros, 
en el que la trayectoria del controlador 
NMPC se encuentra más próxima a la 
maniobra objetivo que el MPC. Tam-
bién el controlador no lineal puede 
corregir el error en régimen perma-
nente. Se observa en el tramo de los 
100 metros hasta el !nal del recorrido, 
donde el NMPC corrige perfectamen-
te la trayectoria y el MPC no puede 
hacerlo completamente. 

Por otro lado, en la !gura 6a se 
puede visualizar la capacidad de segui-
miento de la referencia del ángulo de 
guiñada de los controladores. En este 
caso, las discrepancias entre ambos son 
menores, y es el controlador no lineal 
NMPC el que se queda más próximo. 
Pero, a diferencia de lo ocurrido en el 
seguimiento de la referencia lateral, los 
dos controladores sí pueden corregir el 
error del régimen permanente. Esto 
puede verse a partir de los 4,5 segun-
dos de simulación, cuando se amorti-
guan las oscilaciones y se demuestra 
que el sistema tiene una respuesta 
estable. En la !gura 6b-d, se observa 
la evolución de los ángulos de direc-
ción, deslizamiento de vehículos y del 
neumático, respectivamente. Ambos 

describen curvas muy similares. La 
mayor diferencia entre dichas curvas 
se observa en el primer segundo de la 
simulación, coincidiendo con el inicio 
de la maniobra del cambio de carril y 

cuando la aceleración lateral del vehí-
culo se ve incrementada. Este efecto 
se traduce en un aumento del ángulo 
de deslizamiento lateral del neumáti-
co, y se alcanzan valores que se quedan 

	Parámetros	del	controlador Valor 
(unidades)

Parámetros	del	
ensayo Valor (unidades)

Periodo de muestreo Velocidad del 
vehículo

Horizonte de predicción Coeficiente de 
adherencia

Horizonte de control

Coeficiente de ponderación en 
posición longitudinal

Coeficiente de ponderación en 
posición lateral

Coeficiente de ponderación del 
ángulo guiñada

Coeficiente de ponderación de la 
variable de control

Tabla 3. Parámetros del controlador y características del escenario 2
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b) Comparación del ángulo de dirección delantero;  
c) Comparación del ángulo de deslizamiento, y  
d) Comparación del ángulo de deslizamiento del neumático.
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fuera de la zona lineal de trabajo de este, 
lo que justi!ca el mejor rendimiento del 
controlador NMPC frente al MPC.

CONCLUSIONES
En este artículo se diseña un algoritmo 
de control predictivo basado en el mo-
delo no lineal del neumático. Este per-
mite reducir el error de cálculo de las 
fuerzas de los neumáticos del vehículo 
ante condiciones adversas, como zonas 
con muy baja adherencia, elevadas velo-
cidades, etc.., y se evita el deterioro en la 
capacidad de seguimiento de maniobras 
bajo dichas condiciones. En el contro-
lador no lineal propuesto, las fuerzas se 
caracterizan mediante funciones no li-
neales basadas en el modelo de Dugoff, 
en vez de hacer uso de la aproximación 
del comportamiento lineal del neumá-
tico, el cual, según se comenta previa-
mente, presenta ciertas limitaciones en 
su aplicación. Durante el proceso de 
diseño del controlador, se hace uso de 
la expansión en series de Taylor amplia-
mente usada en el proceso de linealiza-
ción de sistemas complejos. Esto es de-
terminante para la construcción de las 
matrices características que permiten 
la resolución del problema de optimi-
zación. Posteriormente, se lleva a cabo 
un proceso de discretización del sistema 
mediante el método de Euler. Para po-
der validar el potencial del controlador 
propuesto, se llevan a cabo una serie de 
simulaciones bajo distintas condiciones 
y se compara con el controlador lineal 
clásico MPC. El primer escenario con-
siste en realizar la maniobra de cambio 
de carril a una velocidad baja y un coe-
!ciente de adherencia alto. Ambos con-
troladores muestran una gran precisión 
a la hora de realizar el seguimiento de 
la trayectoria, y el controlador no lineal 
es ligeramente superior. En el segundo 
escenario se duplica la velocidad y se 
mantiene la trayectoria y la adheren-
cia. Aquí ambos controladores pierden 
rendimiento; muestra mayor estabili-
dad y precisión el controlador no lineal 
NMPC. Como trabajo futuro, se pro-
pone ampliar la cantidad de ensayos que 
realizar, variando las condiciones de tra-
bajo. Esto incluye escenarios que simu-
len conducción en super!cies con bajo 
coe!ciente de adherencia, velocidad 
variable, etc., además de probar otras 
maniobras típicas de ensayos como el 
camino senoidal o de serpiente o un ca-
mino aleatorio que incluya trazados con 
diferentes curvaturas.
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