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Resumen

El campo de los vehiculos y de la conducciéon auténoma se en-
cuentra inmerso en un rapido crecimiento y expansion. Por ello,
en el presente articulo se pretende disefiar un controlador predic-
tivo que sea capaz de calcular el angulo de direccion éptimo para
poder seguir una trayectoria genérica, ademas de realizar trayec-
torias como el cambio de carril y el doble cambio de carril. Este
tipo de controladores necesita un modelo interno que represente
la dinamica longitudinal, lateral y la guifiada con precision, el cual
se describe mediante un conjunto de ecuaciones diferenciales de
segundo orden que especifica dicho comportamiento dinamico.
A diferencia de otros tipos de controladores, el controlador predic-
tivo requiere de la resolucion de un problema de optimizacién para
obtener la accién de control. La funcion de coste caracteristica de
la optimizacion se compone de un conjunto de matrices que, en su
totalidad, describen el comportamiento del controlador predictivo.
Se destaca la importancia de recoger el comportamiento dinamico
del modelo en su forma matricial. Para ello, se debe someter al
conjunto de ecuaciones diferenciales a un proceso matematico de
linealizacion, obteniendo la representacion en espacio de estados
del modelo. Una vez representado en su forma matricial, se cons-
truyen el resto de matrices de la optimizacion a partir de estas.

En la resolucion del problema de seguimiento de trayectorias, es
habitual el uso de modelos de vehiculo simplificados que asumen
un comportamiento del neumatico lineal, en el que las fuerzas la-
terales y longitudinales de estos son proporcionales al angulo de
deriva.
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Abstract

The field of vehicles and autonomous driving is currently
undergoing rapid growth and expansion. For this reason, the
present article aims to design a predictive controller capable
of calculating the optimal steering angle to follow a generic
trajectory, as well as to perform manoeuvres such as lane
changes or double lane changes. This type of controller requires
an internal model that accurately represents the longitudinal,
lateral, and yaw dynamics, which is described by a set of
second-order differential equations that capture such dynamic
behaviour.

Unlike other types of controllers, the predictive controller
requires solving an optimization problem to obtain the control
action. The cost function characteristic of the optimization is
composed of a set of matrices that, as a whole, describe the
behaviour of the predictive controller. Emphasis is placed on
capturing the dynamic behaviour of the model in its matrix form.
To achieve this, the set of differential equations must undergo a
mathematical linearization process, resulting in the state-space
representation of the model. Once expressed in its matrix form,
the remaining optimization matrices are derived from it.

In solving the trajectory tracking problem, it is common to use
simplified vehicle models that assume linear tire behaviour, in
which lateral and longitudinal forces are proportional to the slip
angle.

Keywords
Nonlinear model predictive control (NMPC), model predictive control
(MPCQ), path tracking (PT), quadratic programming (QP).
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Imagen cedida por los autores del articulo

INTRODUCCION

Debido al incremento de la congestién
del trifico y al aumento de incidentes
causados por una conduccién impro-
pia, el interés por la implantacién del
vehiculo auténomo en la sociedad ac-
tual se ha visto incrementado. En los
ultimos afios, ha surgido un avance tec-
nolégico en el campo de la conduccién
auténoma impulsado por su potencial
para mejorar la seguridad, promover
una conduccidn eficiente en el consu-
mo de energfa y optimizar el flujo del
trafico (Urmoson ez 4l.). Es por ello por
lo que Qing Li analiza las necesidades
del vehiculo auténomo y presenta la
arquitectura del sistema de control y la
capacidad de detectar carriles de for-
ma automatica (Li et 4/., 2004). Desde
entonces, muchos investigadores han
dedicado grandes esfuerzos a realizar
avances en el desarrollo y el control
del vehiculo auténomo. Desde la pers-
pectiva de la deteccién de obsticulos,
Hine es capaz de extraer la informa-
ci6n de obsticulos estdticos de mapas
de profundidad calculados a partir de
imdgenes consecutivas (Hine et al.,
s.f.). Abdelmoghit Zaarane plantea un
sistema de medicién de distancia entre
vehiculos para conduccién auténoma
basado en el procesamiento de image-
nes, haciendo uso de cimaras estéreo

y procesamiento de imagen (Zaarane
et al., 2020). Desde la perspectiva del
path planning, Huang propone el uso
de un algoritmo RRT (Rapidly-explo-
ring Random Tree) para la planificacion
de rutas en un entorno complejo con
un gran nimero de obsticulos aleato-
rios (Huang & Ma, 2022). Chao Chun
Yuan presenta un nuevo algoritmo de
fusién que combina el algoritmo de
colonia de hormigas y un campo po-
tencial mejorado, lo que permite que el
vehiculo auténomo evite obsticulos y
conduzca de manera mds segura (Yuan
et al., 2020).

En el drea del control de vehiculos
auténomos, José E. Naranjo propone
un sistema de adelantamiento para ve-
hiculos auténomos equipado con capa-
cidades de seguimiento de trayectoria
y cambio de carril. El sistema utiliza
controladores difusos que imitan el
comportamiento y las reacciones hu-
manas durante maniobras de adelan-
tamiento; se basa en la informacién
proporcionada por un sistema de po-
sicionamiento global de gran precisién
y un entorno de red inalimbrica (Na-
ranjo et al., 2008). Hamid presenta un
novedoso método de control indirecto
robusto y adaptativo basado en un en-
foque de red neuronal difusa de tipo
2 con modo deslizante de tipo expo-

nencial, considerando incertidumbres
paramétricas relacionadas con la ri-
gidez nominal en curva del vehiculo,
el coeficiente de adherencia neumdti-
co-carretera, los pardmetros inerciales
y la velocidad de avance (Taghavifar
& Rakheja, 2019). Teniendo en cuenta
el conflicto existente entre precisiéon
de seguimiento y la estabilidad bajo
condiciones extremas de conduccion,
Tchamna promueve un nuevo enfoque
para controlar la tasa de guifiada y el
deslizamiento lateral de un vehiculo,
sin descuidar su dindmica longitudinal
y sin realizar suposiciones simplifica-
doras sobre su movimiento (Tchamna
y Youn, 2013). Kibeom Lee propone
un control lineal cuadritico gaussiano
(LQG) para disefiar de manera efi-
ciente y sistemadtica el controlador de
seguimiento de trayectoria, al mismo
tiempo que maneja eficazmente los
problemas de ruido y error que sur-
gen de los algoritmos de localizacién
y planificacién de trayectorias (Lee et
al., 2019). Hay multitud de técnicas y
algoritmos para realizar el control so-
bre el movimiento del vehiculo, pero
todos estin enfocados en mejorar la
precision y la estabilidad del control.
Mis alld de estos controladores, el
control predictivo basado en modelo
destaca por su capacidad para manejar
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sistemas complejos y dindmicos, opti-
mizando el control mientras respeta
las restricciones operativas del vehicu-
lo (Yu et al., 2021), convirtiéndolo en el
algoritmo de control mds empleado a
la hora de resolver los problemas de se-
guimiento de trayectorias en vehiculos
auténomos.

Primeramente, Falcone (2007) de-
fiende la implementacién de un con-
trolador predictivo para controlar un
sistema de direccién activa en el eje
delantero de un vehiculo auténomo.
Este compara dos enfoques con dife-
rentes costes computacionales: el uso
de un modelo no lineal de elevada
complejidad del vehiculo, sujeto a un
proceso de linealizacién en cada itera-
cién, y un modelo de menor compleji-
dad cuyos pardmetros varfan de forma
lineal. Este dltimo tiene en cuenta el
estado del vehiculo y las restricciones
para garantizar la estabilidad a grandes
velocidades y en superficies con poca
adherencia. Posteriormente, Falcone
et al. (2008) presentan un esquema de
seguimiento de trayectoria basado en
control predictivo por modelo (MPC)
para realizar maniobras de evasién de
obsticulos mediante la optimizacién
del dngulo de la direccién y el control
de la aceleracién o el frenado. Cheng
(2021) disefia un controlador de segui-
miento de trayectoria robusto basado
en MPC, capaz de hacer frente a in-
certidumbres en los parimetros. Este
controlador incorpora un algoritmo
novedoso que puede resolverse me-
diante un conjunto de desigualdades
matriciales lineales (LMI), derivadas
del principio de estabilidad asintéti-
ca de Lyapunov. Mis tarde, Cheng ez
al. (2021) proponen un algoritmo de
control predictivo adaptativo, el cual
calcula los pardmetros caracteristicos
del controlador en funcién del estado
del vehiculo y de las condiciones del
trazado. En la mayoria de los articulos
previamente citados, muchos autores
optan por emplear el modelo lineal
de bicicleta, el cual ayuda a reducir el
coste computacional y muestra gran
precisién siempre y cuando se trabaje
en la zona lineal del neumitico. Sin
embargo, en maniobras extremas y
en superficies de baja adherencia, este
controlador presenta limitaciones. Por
ello, en el presente articulo se disefia
un algoritmo de control predictivo ba-
sado en el modelo no lineal de Dugo-
ff, el cual, mediante una formulacion

matemdtica mds simple que otros mo-
delos de neumitico como el de Pacjec-
ka, puede reproducir con precisién el
comportamiento real del neumdtico.

MODELO DINAMICO DEL
VEHiCULO

Modelo de bicicleta

La resolucién del problema de segui-
miento de trayectorias (PT) depende
en gran medida del modelo de vehi-
culo empleado, ya que es un requisi-
to indispensable para la estrategia de
control utilizada. Los vehiculos son
sistemas muy complejos, con multiples
grados de libertad y una gran cantidad
de pardmetros que varfan de forma
no lineal con el tiempo. Debido a esta
complejidad, resulta extremadamen-
te dificil desarrollar un modelo capaz
de capturar, en su totalidad, todas las
caracteristicas del vehiculo. Ademsis,
emplear un modelo tan detallado im-
plicarfa un aumento significativo en el
costo computacional, lo que dificulta-
ria su implementacién en el control en
tiempo real. Por ello, es esencial utili-
zar un modelo dindmico simplificado
cuyos pardmetros puedan adaptarse
con el tiempo, manteniendo un equi-
librio entre precisién y viabilidad com-
putacional. Este enfoque permite un
buen seguimiento de la trayectoria en
tiempo real sin comprometer el rendi-
miento.

En este apartado, se introduce el
modelo de vehiculo y de neumitico
empleado para el control basado en el
espacio de estados. Dicho modelo debe

YA

ser capaz de describir la dindmica plana
del automévil, y es necesario describir
mediante ecuaciones los movimientos
longitudinales, laterales y de rotacién.
Se selecciona el modelo de bicicleta
con tres grados de libertad para mode-
lizar la dindmica plana de vehiculos sin
considerar la geometria de Ackerman.
Este es una representacién simple y
efectiva que se utiliza ampliamente
en los controles de estabilidad y tra-
yectoria de vehiculos auténomos (Lin,
Sun, Wu, y Qian, 2021). Este articulo
demuestra cémo aplicando dicho mo-
delo simplificado, que incluye la rigi-
dez de los neumiticos, puede lograrse
un seguimiento preciso y suave de la
trayectoria de referencia. EI modelo es
eficaz incluso en condiciones dificiles
que involucran movimientos laterales,
longitudinales y de giro del vehiculo.
Para poder aplicar este modelo, se de-
ben considerar las siguientes simplifi-
caciones:

®Las ruedas del mismo eje se agrupan
en una sola rueda ubicada en el cen-
tro del eje delantero o trasero.

*El peso del cuerpo del vehiculo se
distribuye en cada rueda.

eEfectos como los movimientos de
la suspension, fenémeno de desliza-
miento y los efectos de la aerodind-
mica son despreciados.

*Se ignoran efectos como la relacién
de acoplamiento de la fuerza del
neumidtico y el efecto del par de ali-
neacion.

La representaciéon del modelo en un
sistema de coordenadas plano puede
visualizarse en la figura 1.

Figura 1. Modelo de bicicleta de tres grados de libertad.
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De acuerdo con la Segunda Ley de
Newton y Euler, el equilibrio de fuer-
zas y momentos resultante a lo largo de
los ejes «x, y y z locales cuya referencia
estd centrada en el centro de gravedad
del vehiculo es el siguiente:
mi = 2F, + 2F, + my¢ @
my = 2F,; + 2F, —mip ()
IZ(I) = ZFyflf - ZFyrlr (3)
donde 7 es la masa del vehiculo, Fyf
y Fyr son las fuerzas longitudinales de
las ruedas delantera y trasera respecto
del eje local w. Fy ¢y Fy, son las fuerzas
laterales sobre los delantero y trasero,
calculadas respecto del eje local y. La
inercia del vehiculo respecto del eje z
viene representada por el pardmetro /,,.
Las fuerzas de los neumiticos de-
lantero y trasero obtenidas en las di-
recciones x e y se relacionan con las
fuerzas longitudinales y laterales de
estos. La relacién es la siguiente [1]:

Fyp = Fiy cos(8;) — Fey sin(8y)
E,,. = F,,. cos(8,) — F,, sin(4,)
F,r = Fipsin(8¢) + Fcf sin(5¢)

)
Fy. = Fy,.sin(8,) + F,, cos(5,)

En la férmula (), Fi y Fj,. son las
fuerzas longitudinales de las ruedas
delantera y trasera, F¢ y F, son las
fuerzas laterales de ambas ruedas (de-
lantera y trasera). Los dngulos de di-
reccién delantero y trasero se repre-
sentan como O¢ y 8, respectivamente.
Se asume que el modelo de vehiculo
seleccionado solo tiene direccién en la
rueda delantera, lo que resulta en que
8,=0. Ademds, si se desprecia el efecto
de transferencia de carga y asumiendo
que la velocidad del vehiculo cambia
lentamente, las cargas verticales del
neumitico delantero y trasero puede
calcularse (Chen et al., 2013):

_ lmg
Fpy = 2(Lp+1) G)
_ lrmg
2 2(lp+y) ©)

Las fuerzas longitudinal y lateral
del neumitico puede expresarse como
una funcién compleja del dngulo de
deriva del neumdtico o dngulo de des-
lizamiento longitudinal del neumadtico
sy la fuerza vertical F,, ademads de otros
parametros que se comentarin con
mds detalle posteriormente:

Flzfl(a'S'Fz) (7)
Fo=f(asE) (8

Ademis, los dngulos de deriva trasero
y delantero pueden calcularse aplican-
do la siguiente ecuacién:

V-l ©)

x

il
=22 o

En la féormula, a5 y a, son los dn-
gulos de deslizamiento de las ruedas
delanteras y traseras, respectivamente,
X e y son las velocidades longitudinal
y lateral del vehiculo, ¢ es la tasa de
variacién del dngulo de guifiada y &
, el dngulo de direccién de la rueda
delantera. Con el fin de minimizar el
coste computacional para el modelo
simplificado, se asume la hipétesis de
pequefios dngulos de deslizamiento.
Se traduce en una simplificacién en las
funciones trigonométricas que apare-
cen en las ecuaciones que describen la
dindmica del modelo de bicicleta de la
figura 1. Se da la siguiente condicién:

cos &y ~ 1,5in 8y ~ &, tandy = & (11)

Las ecuaciones (1)-(8) derivan del
sistema de coordenadas local centrado
en el cuerpo del vehiculo. Hay una re-
lacién entre el sistema de coordenadas
fijo en el cuerpo y el sistema de coor-
denadas inercial XY

X =% cos; —ysind; (12)
Y =xsind; +ycosdy (13)

Donde X es la posicién longitudinal
en el sistema de referencias inercial e
Y es la posicion lateral en el sistema de
coordenadas inercial.

Modelo de neumatico no lineal.
Modelo de Dugoff

Para conseguir una reduccién en el
coste computacional de los cilculos, es
muy habitual encontrar algoritmos de
control en los que se asume la hipétesis
de pequefios dngulos de deslizamien-
to descrito en la ecuacién (9). Cuando
dicha hipétesis es cierta y los dngulos
de deslizamiento longitudinal y lateral
son pequefios, las fuerzas que actdan
sobre el neumitico pueden aproximar-
se linealmente como:

{Fl =C(;s (14)
F.=C.a

En la ecuacién (12), C; es la rigidez
longitudinal del neumadtico y C, es su
rigidez lateral. El uso de dicha ecua-
ci6n tiene limitado el rango de aplica-
cién, ya que solo es viable su uso para
aceleraciones laterales a, menores de
0,3-0,4 g y condiciones de adheren-

cia normales y no cerca de la pérdida
de traccién. En caso de sobrepasar el
limite de la aceleracion lateral o si el
vehiculo circula en superficies de baja
adherencia, las fuerzas laterales y lon-
gitudinales que se calculan en el mo-
delo interno del controlador pueden
inducir cierto error. Empiricamente,
se ha observado que, en caso de so-
brepasar dichas limitaciones, el incre-
mento de las fuerzas en el neumdtico
es miés lento con el dngulo de deriva
longitudinal y lateral, perdiendo la li-
nealidad. Por ello, las fuerzas calcula-
das bajo la hipétesis lineal de pequeifios
deslizamientos serian mayores que la
fuerza bajo condiciones reales, lo que
introduce una discrepancia en el mo-
delo interno del controlador y afecta
el rendimiento del controlador. Para
hacer el controlador mds preciso y
versitil, se implementa un modelo de
vehiculo basado en el modelo de neu-
midtico no lineal de Dugoff (Gao er al.,
2024.), reemplazando el coeficiente de
rigidez constante de la ecuacién (12)
por un coeficiente corregido no lineal,
el cual permite capturar el comporta-
miento real del neumdtico bajo condi-
ciones que favorecen la pérdida de pro-
porcionalidad entre el deslizamiento y
la fuerza. La expresiéon que se usa para
el célculo de este nuevo coeficiente de
rigidez no lineal es:
cnon — Ca_’]f(o-) (15)
@ij T q-sy;

f(o) es el pardametro de deflexion
del neumatico, el cual otorga al mode-
lo interno la capacidad de reproducir
el comportamiento del neumitico con
mayor rigor, involucrando los rangos
de trabajo en los que se pierde la linea-
lidad debido a los factores descritos en
el parrafo anterior. Este se calcula apli-
cando la siguiente férmula:

o= HFz;;(1=sij) 16)

2 2
ZJ(CSijSiJ') +(C“ij tan aij)

U es el coeficiente de adherencia,
F,.. es la carga vertical sobre el neu-

L . .
mitico, C, . es el valor de referencia del

. Y .. . .

coeficiente de rigidez longitudinal del
neumitico y Cy; es el valor de referen-
cia de rigidez lateral. s;; y a;; son sus
dngulos de deslizamiento longitudinal
y lateral. El indice i indica la direccién
de la fuerza (x 0 y) y el indice j la rueda
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en la que se aplica la fuerza (delantera
o trasera). En las ecuaciones, la rueda
delantera se asocia con la letra f, que
deriva del inglés fiont. Para la rueda
trasera, se hace uso de la letra r, en
inglés rear. Una vez calculados los pa-
rdmetros de rigidez longitudinal y la-
teral, pueden obtenerse las fuerzas la-
teral y longitudinal de forma sencilla:

FXij = C;E.msij (18)

Fyij = C"""aij (19)

aij

En la figura 2 puede verse la evo-
luci6n del nuevo coeficiente de rigidez
Cg;;" frente al dngulo de deslizamiento
del neumitico a;; a distintos valores
de coeficiente de friccion p. Para dn-
gulos de deslizamiento pequeiios (0-2
grados), dicho coeficiente presenta un
comportamiento lineal, lo que hace
que la fuerza lateral varie también li-
nealmente. De este modo, se valida la
hipétesis de proporcionalidad plan-
teada inicialmente. Por otro lado, en
dicha figura también se aprecia que,
a partir de dngulos de deslizamiento
mids elevados, por encima de 2 grados
aproximadamente, el valor que toma el
coeficiente de rigidez propuesto dis-
minuye de forma no lineal y captura la
variacién no uniforme tan caracteris-
tica del neumitico (Gao er al., 2024.).
Este cambio en la rigidez no solo re-
fleja la capacidad del neumdtico para
mantener la adherencia a altas veloci-
dades o en condiciones extremas, sino
también la forma en que las caracte-
risticas del material y la estructura del
neumdtico influyen en su rendimiento
bajo diferentes condiciones de carga y
deslizamiento. Bastaria con aplicar las
férmulas (18) y (19) para obtener el va-
lor de las fuerzas longitudinal y lateral
para su respectivo coeficiente de rigi-
dez ajustado C°™

En la figura 3 puede visualizar-
se que, ante un determinado valor de
carga vertical de 4.120 N, la influencia
del coeficiente de fricciéon U sobre las
fuerzas laterales a las que se puede ver
sometido el neumdtico. El propio valor
del coeficiente de rodadura determi-
na el limite de deslizamiento de este.
Cuanto mds grande sea el valor de di-
cho coeficiente, mayor es la rigidez del
neumatico (v. Fig. 2) y, por consiguien-
te, mayor es el valor pico de la fuerza
lateral. El valor de rigidez constante C,,
empleado para realizar los cilculos del

x 10

ot (N/7)

C

4000

U S
—
o
-
n
8

3000

2000

F 0N

0
o 'f")

Figura 3. Efecto de la de fricciéon U y del angulo de deslizamiento ai]- sobre la fuerza lateral del neumatico Fy-

modelo de Dugoff de las ecuaciones
(15)-(17) y que permite la representa-
ci6n de las figuras 2 y 3 es de 48.400
N/°. Este es un valor representativo
para simular el comportamiento del
neumidtico ante condiciones tipicas de
carga y deslizamiento.

Puede verse en las ecuaciones (18) y
(19) que la fuerza lateral es solo depen-
diente del dngulo de deslizamiento la-
teral y que la fuerza longitudinal lo es
del deslizamiento longitudinal. Por lo
que sustituyendo dichas ecuaciones en
las ecuaciones (1)-(3), se puede obtener
el modelo de bicicleta no lineal basado
en Dugoff: s

oo 2 e cos(87)-2C82" (5L Jsin(8 )+ 2Fer i (2 0)
w0 QD)
: @2)

A
. 2hxysin(sp) 2" (62 eos(ap) 2

X= X cos 8y — ysin & (24)
Y:J'csinéf+}'lcos6f (25)

DISENO DEL CONTROLADOR
PREDICTIVO BASADO EN
MODELO

Algoritmo de control propuesto

El controlador predictivo basado en
modelo (MPC) es una estrategia de
control avanzado que utiliza un mo-
delo matemidtico discreto del sistema
para prever su comportamiento futuro
y determinar las acciones de control
optimas. Este enfoque se basa en la
definiciéon de dos horizontes clave: el
horizonte de prediccién N, y el hori-
zonte de control N,. El horizonte de
prediccién es el intervalo de tiempo
en el que el controlador anticipa la di-
namica futura del sistema, evaluando
el impacto de las posibles acciones de
control sobre las salidas del sistema.
Por otro lado, el horizonte de control
corresponde a la porcién del horizonte
de prediccién en la que se optimizan
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y se aplican las acciones de control,
usualmente limitado para simplificar
el problema y para evitar elevados cos-
tes computacionales.

El principio fundamental del MPC
consiste en resolver, en cada instante
de tiempo, un problema de optimi-
zacién que minimiza una funcién de
coste, la cual combina los errores entre
las salidas predichas y las referencias,
asi como los esfuerzos de control. Este
cilculo se realiza bajo las restricciones
fisicas y operativas del sistema, como
limites en los estados, salidas y entra-
das. Solo se aplica la primera accién de
control de esta secuencia, y el proceso
se repite en el siguiente paso, actua-
lizando el modelo con las mediciones
mds recientes. La estructura del con-
trolador puede verse en la figura 4.

El primer elemento importante es
el generador de referencias, el cual,
en funcién de la posicién y velocidad
estimada del vehiculo, obtendrd para
cada instante de tiempo Ty, el conjunto
de puntos que sirven como referencia
durante todo el horizonte de predic-
ci6n definido en el controlador. Otro
elemento importante para destacar es
el modelo de neumitico de Dugoff.
Tomando los dngulos de deslizamien-
to a y @, como entrada, calcula in-
ternamente los coeficientes de rigidez
no lineal CZ};" y €™ El controlador,
tomando los nuevos coeficientes de ri-
gidez, actualiza el modelo interno del
vehiculo y predice el comportamiento
de este a lo largo del horizonte de pre-
diccién. Finalmente, una vez predicho
el comportamiento, se compara con el
conjunto de puntos de la referencia y
se obtiene la accién de control éptima.
Esta tltima es el dngulo de direccién
del vehiculo.

Modelo empleado para la
prediccion

La discretizacién es un proceso
esencial para el desarrollo de algo-
ritmos de control de tipo predictivo,
ya que estos emplean un modelo dis-
creto del sistema dindmico interno
para realizar la prediccién sobre el
comportamiento futuro de este. Es
necesario representar en espacio de
estados las ecuaciones (20)-(25). Para
ello, seleccionamos como variables
de estado la posicién longitudinal x,
la velocidad longitudinal %, la posi-
cién lateral y, la velocidad lateral y
, el dngulo de rotacién de vehiculo

(dngulo de guifiada) ¢, la variacién
del dngulo ¢, la desviacién lateral 'y
la desviacién longitudinal X. El con-
junto de variables de estado se agrupa
de forma matricial, definiendo lo que
se conoce como vector de estados x=
[X,%Y,y,¢, @]T- En las ecuaciones
(20)-(23) se observa que el sistema
también depende de la variable del
angulo de direccién &;. En sistemas
de control aplicado al seguimiento de
trayectorias, es muy habitual elegir
como variable de control u = &.

La forma general de representar la
ecuacion de estado es la siguiente:

x=f(xu) (6)

Si se restan las ecuaciones (28) y
(27) se obtiene:

X¥=A®X+B@®)U (29

Donde las matrices A(t) y B(t) se
conocen como matrices jacobianas, y
representa las derivadas parciales de
una funcién respecto de sus variables
independientes. Estas variables de es-
tado se agrupan dentro del vector de
estados x y la variable de control u.
Analiticamente, estas matrices se cal-
culan:

0 Ux o Ux Ux

ox% ay ¢
La variable de estado y la variable 0 % o % 0 %
de control del vehiculo de referen- 0 Yr o Ur Uy
cia satisface, para cualquier instante  4() = bl A (30)
de tiempo, la ecuacién de arriba. El 0 55 0 5 0
subindice r representa la variable de 0 0 0 o ‘;ﬁ 0
referencia: 0 Mo o e (;,, oy
X = fxpu,) (27) o 4 %
El paso previo a la discretizacién
es la linealizacién del sistema defini- 0
do en la ecuacién (26). Para ello, se i
realiza una expansion en series de ou 31
Taylor alrededor de cualquier punto 0
de referencia de la trayectoria, ig- B)=|Ys
4 ' 18 ou
norando los términos de alto orden 0
(Gao et al., 2024.): e
“ou
x= f) + 52 o+ 22 e (28)
|X.2.Y.9.0.9 X.z.Y.9.0¢
c MPC Controller )
(" Modelode )
Vehiculo

flk) = C (k) E(k)

20k + 1) = A (k) 2(k) + B(k) Aulk)

Opembnadsc

&

< Upea()

AU(k) < AT,

% N
min 3 Gk 1)~ Yotk 4 O+ Y (Autk 4 )], + o
=

0

¢~ Modelo de neumitico de Dugoff )

/’I("..

€, N

Figura 4. Bucle de control del MPC
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Los términos de la matriz A(t) y
B(t) son:

Ux _

i =cosg
Ux _ _ g
2y = sing
x
29

non
%:z(cu[ .smﬁr(yﬂjw))
% mx?
o _ —2(c},‘;”‘sm sr) N

=—Xsing —ycos¢p

oy mi
o _ 72(62’,‘}'".¢m6f)lf o
ap mx ¢
¥ — sin @
ox 32
i (32)
2y = oS¢

oy _ ., e
g = XCOS@ —ysing

o cnon cos
oy z(cui co;&,(yuf«p)) 2639 5-1,p)
0x mi? mi?
ory __ckreosey) | aapen
ay mt ma
ofy 2(cggmcos 8r)ly  acpon,
0 mt mx
o _q
00
non
oy 72(% cossy(5+17) ) e
ox 1,%2 Ipx?

o _ z(c;‘;"cossf)zf 2c80m,

2y L 1%
oy _ 2(53}’" cos 6y )17 2cq2mE
ap =3 1%
. Y+l
of, _ 2R fsingy  2CEsingy 2c;‘f"(5,—7L> cos sy
ou m m

m
N o vy
Ofy _ 2Fxf cossy . zcy;"cosa, _ zc,?}"‘(ép Xf )smbf

u m m m

2Ff1 2c3om 20pon(5,- LU gins
fp _ 2 fco>§f+ af Yeossy 2Cap \Opm5)lrsindr

ou I Iz Iz

La férmula (29) representa una
ecuacién de espacio de estados conti-
nua en el tiempo. Para su implemen-
tacién en el algoritmo de control, esta
debe discretizarse, ya que el MPC
requiere de un modelo en espacio de
estados discreto para poder realizar la
prediccién. Hay multitud de métodos
de discretizacién de ecuacién, cada
uno con sus ventajas y desventajas en
cuanto a los requisitos computacio-
nales, precisiéon del seguimiento de
la trayectoria, etc. (Gao et al., 2024.).
En el presente articulo, se propone el
método de discretizacién de Euler, que
permite representar las matrices del
sistema continuas A(t) y B(t) en su
forma discreta:

A(k) =1 + T,A()
B(k) = T,B(t) 33)

T; es el tiempo de muestreo e I, la
matriz identidad cuya dimensién debe
ser coincidir con la de la matriz A(t)
. En este caso es una matriz 6x6. Una
vez realizada la discretizacién, el nue-
vo modelo en espacio de estados que se
obtiene es:

Ak +1) = AGOT(k) + BAOUK) (34)

Ya que la variable de control es el
dngulo de direccién de la rueda de-
lantera &8, para poder asegurar un
funcionamiento normal del vehiculo y

prevenir cambios repentinos en dicho
angulo, es crucial limitar el incremen-
to del dngulo de direccién. Con este
proposito, la ecuacion (34) se transfor-
ma a su representacién en forma de in-
crementos de la accién de control (Gao
et al., 2024.). Esta reformulacién per-
mite que el sistema controle directa-
mente los cambios en el dngulo, lo que
es esencial para mantener una conduc-
cién suave y predecible, especialmente
en escenarios en los que el comporta-
miento dindmico del vehiculo puede
verse afectado por variaciones rapidas:

x(k +1) = AWx(k) + BUoauk) (35)

En la formula: =o-Git)a-: b)) sm-ww-ws.

En el algoritmo propuesto, la refe-
rencia del controlador es el conjunto
de puntos de la trayectoria objetivo,
los cuales estdn definidos en el plano
mediante su posicién en X, en yy el dn-
gulo de rotacién respecto al punto an-
terior @. Con el propésito de realizar
el seguimiento del camino objetivo, las
salidas del controlador seran aquellas
que permiten ubicar el vehiculo en el
plano, y son: la posicién longitudinal
del vehiculo en coordenadas globales
X, la posicién lateral en coordenadas
globales Yy la rotacién del vehiculo o
dngulo de guifiada . De esta manera,
el MPC calculari la accién de control
6ptima que minimice el error existen-
te entre la posicién actual del vehiculo
y la trayectoria. En otras palabras, el
objetivo es reducir la distancia entre
el vehiculo y la trayectoria conforme
avanza la simulacién [16]. Segtn los
fundamentos de la representacién de
sistemas en espacio de estados, las sa-
lidas pueden obtenerse mediante la si-
guiente operacién matricial:

y(k) = C(l)x(k) (36)
/100000
C= (0 0100 0).
00 0010

Por lo que combinando las ecuacio-
nes (35) y (36), se obtiene el modelo
completo en espacio de estados discre-

'{f(k +1) = AWK +Blosak) (37

y(k) = CUx (k)

Calculo de la salida en el dominio
temporal de la prediccion

Se asume que el horizonte de predic-
cion N,, es mayor que el horizonte de
control N.. Basindose en la ecuacién
(37), se estima que se aplicardn N, in-
crementos de control durante el hori-

zonte de control del sistema. Cuando
el tiempo k se encuentra en el horizon-
te de control, al pasar del horizonte de
control al horizonte de prediccién, la
cantidad de control aplicada al sistema
permanece constante y el incremento
de la accién de control es 0. Tras rea-
lizar la derivacién, se puede obtener la
expresion de salida predicha del siste-

ma (Gao et al., 2024.):
y(k) = A()X(klk) + BUOAT(K)  (38)

En la formula es:
<y(k +1lk) ) ~ Ai(k|k)
F(k) = : AT :( o )
y(k + Nplk) Ak + N, — 1|k)
. CB 0 0
B (7] _ : : 0
A(k):<~~z ) B =|CA%B . CB
ANy : :
CAWIE - CAW MR
Definicién de la funcion de coste
objetivo
Como se comenta anteriormente, el
MPC necesita de una funcién de cos-
te que optimizar para calcular el valor
6ptimo de la accién de control. De esta
manera, para garantizar que el vehicu-
lo auténomo sea capaz de seguir una
trayectoria de referencia con precisién
y de forma estable, es necesario opti-
mizar el error existente entre la refe-
rencia y la posicién del vehiculo esti-
mada y la accién de control. Se lleva
a cabo la optimizacién del error a lo
largo del horizonte de prediccion N, y
la de la accién de control a lo largo del
horizonte de control N, Ademds, es
necesario restringir el incremento en
la accién de control en cada periodo de
muestreo, evitando variaciones brus-
cas y oscilaciones. Por consiguiente,
refiriéndose al método de restricciones
suaves utilizado en la literatura [18], la
forma seleccionada de la funcién obje-
tivo es la siguiente:
J = S0+ 1)~y + 10 + 25wt + il + e (39)
En la férmula, p es el coeficiente
de ponderacién del factor de relaja-
ci6n de las restricciones €. Q y R son
las matrices de pesos de la salida y de
la variable de control, respectivamen-
te. El primer término de la ecuacién
representa la acumulacién del error
existente entre la salida del sistema y
la referencia de dicha salida. Es decir,
captura la desviacion entre ambas va-
riables reflejando la capacidad de se-
guimiento de la trayectoria objetivo.
El segundo término hace referencia a
la acumulacién de desviaciones de la
variable de control. Refleja el requisito
de cambio uniforme en dicha variable.
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El tercer término garantiza que haya
una solucién 6ptima factible al reali-
zar cambios en tiempo real. y(k + i|k)
es el valor predicho de la salida para el
tiempo discreto k en el tiempo futu-
ro k +i. ¥,k +ilk) es el valor de
referencia de la salida para el tiem-
po discreto k en el tiempo futuro
k+i. Au(k +ilk) es la secuencia del
futuro de la variable de control.

Las matrices de pesos Q y R se cal-
culan del siguiente modo:

o g o
Q = 0 o 0 ,q=|0 g, 0
. 0 0 gq

0 0 0 ¢q (3xNp)x(3xNy) C)

r - 0 0

i r 0

R= 0 -« = 0
0 0 0 7/ (oxwp

Realizando las operaciones necesa-
rias para transformar el problema de
optimizacién genérico definido por la
funcién de coste J de la ecuacién (39)
en su representacién matricial[18], se
obtiene la formulacién tipica de un
problema de optimizacién cuadritica
QP:

J= %'I’(k)TH(k)'I’(k) +HUOT®U) +PK)  (40)

La matriz H(k) es la matriz hes-
siana, f(k) es el vector del gradiente
lineal, W (k) es el vector de variables de
decision y P (k) es el vector de térmi-
nos independientes. El cilculo de estas
matrices puede verse a continuacién:
2(B(K)'QBU) +R) 0

0 2
P(k) = E(Q)TQE(k), E(k) = A()Z(klk) = yor(klk)

e = )60 = (*).£00 = @EGTOR)  0),

Restricciones del problema de
optimizacion

En algoritmos de control de tipo pre-
dictivo, es necesario imponer ciertas
restricciones que deben cumplirse
durante la resolucién del problema de
optimizacién definido por la ecuacién
(40). Generalmente, se definen restric-
ciones en la propia variable de control
y en su incremento y en las salidas. En
escenarios reales de conduccion, el 4n-
gulo de direccién tiene un rango limi-
tado de giro, por lo que se debe tener
en cuenta dicha limitacién a la hora de
disefiar el controlador. Al mismo tiem-
po, para tener en cuenta la estabilidad
del vehiculo al realizar el seguimiento
de la trayectoria, también se debe limi-
tar el incremento de la variable de con-
trol. Ademds, para evitar desviaciones
excesivas del camino de referencia, se
debe limitar también el valor maximo
y minimo de la posicién longitudinal,
lateral y del dngulo de guinada.

= (unidadeS)

Masa del vehiculo

m = 1.723 kg

Inercia rotacional del vehiculo

I, = 4.175 kg m?

al eje trasero

Distancia entre ejes L=28m
Distancia desde el centro de gravedad If=1,232m
al eje delantero
Distancia desde el centro d dad
istancia desde el centro de graveda I, = 1,468 m

Coeficiente de rigidez lateral del
neumatico delantero

Cop = 48.400 N/rad

Coeficiente de rigidez lateral
del neumatico trasero

Cq, = 44.800 N/rad

Coeficiente de rigidez longitudinal
neumatico delantero

C¢ = 90.800 N/rad

Coeficiente de rigidez longitudinal
neumatico trasero

Cy = 76.000 N/rad

Tabla 1. Parametros del vehiculo

Dicho lo cual, las restricciones im-
puestas al valor maximo y minimo de
la accién de control:

Umin(k) < U(k) < Uméx(k) (41)

U pin (k) es el valor minimo de la va-
riable de control y U 4, (k) es el valor
miximo. Se imponen también restric-
ciones al incremento de la variable de
control:

AU iy (k) < AU(K) < AU g (k) (42)

AU,;;, (k) es el valor minimo del in-
cremento de control y AU 4. (k) es el
valor médximo del incremento. E impo-
niendo restricciones a las salidas:

ymin(k) < 7(’() < yméx(k) (43)

Y min (k) es el valor minimo de la sa-
lida e y ¥,,4x (k) es el valor mdximo de
esta.

SIMULACION

Para validar el rendimiento del con-
trolador MPC no lineal propuesto, se
realizan diversos escenarios de simu-
lacién en el entorno de Matlab/Simu-
link. Estos escenarios incluyen manio-
bras tipicas como el doble cambio de
carril y el camino sinusoidal. Ademas,
las pruebas se llevan a cabo tanto a
velocidad constante como a velocidad
variable, lo que permite analizar el
efecto de la aceleracién longitudinal
en el control. Por dltimo, se plantea
un escenario que considera un trazado
complejo, compuesto por segmentos
rectos y curvos, ejecutado a velocidad
constante.

Parametros de la simulacién

Los pardmetros mecénicos del vehicu-

lo empleado para realizar las diferentes

simulaciones se recogen en la tabla 1.
En linea con [18], las restricciones

que se imponen a la variable de control

y a la variacién de esta son:

—30° < 6 < 30° @4)
—5°< A6, <5°
Escenario 1: simulacién a veloci-
dad constante baja y coeficiente
de adherencia elevado
Se propone estudiar la precisién del
controlador ante un escenario de velo-
cidad del vehiculo constante y la ma-
niobra de referencia es el doble cambio
de carril. Esta maniobra se usa amplia-
mente en ensayos en los que se mide
la estabilidad y la maniobrabilidad del
vehiculo.

El controlador propuesto se basa en
el modelo no lineal de neumitico de
Dugoft, el cual, partiendo de un coe-
ficiente rigidez de referencia, C, . Cyy
para el neumitico delantero y Cg,, Cyr
para el neumitico trasero, obtiene un
nuevo coeficiente de rigidez CgJ" no
lineal que tiene en cuenta rangos de
trabajo del neumaitico en los que se
pierde la proporcionalidad entre la
fuerza y el dngulo de deslizamiento.
Para reflejar el rendimiento de este
primer controlador no lineal NMPC,
se compara con un controlador MPC
convencional. Este no considera la re-
gién no lineal del neumatico y estd di-
sefiado bajo la simplificacién de coefi-
ciente de rigidez lateral y longitudinal
constante. En la tabla 2 se recogen los
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pardmetros del controlador para este
escenario de simulacién:

En la figura 5 puede observarse la
efectividad que tienen ambos contro-
ladores para seguir la referencia de po-
sicién lateral. Bajo unas condiciones de
adherencia elevada 1=0,9 y velocidad
baja v= 36 km/h, ambos controladores
muestran una gran exactitud a la hora
de seguir la trayectoria. Pero, al fijar-
se en el detalle de la zona remarcada,
puede verse que el controlador NMPC
muestra mayor precision y consigue
que la trayectoria que describe el ve-
hiculo controlado esté mds proxima a
la de la referencia. Esta diferencia de
rendimiento entre ambos controlado-
res se acentda en las zonas en las que
la curvatura es mayor, hasta alcanzar
angulos de deslizamiento mds elevados
y acercdndose a la zona de trabajo no
lineal del neumidtico. Aunque en di-
chas condiciones de trabajo se puede
suponer que las fuerzas sobre los neu-
madticos son constantes, el controlador
NMPC puede describir con mayor
rigor las fuerzas sobre los neumaticos
que el controlador lineal MPC. Mues-
tra, por consiguiente, mayor capacidad
de seguimiento de la referencia.

En la figura Sa, se representa el dn-
gulo de guifada de referencia que debe
seguir el vehiculo para poder seguir la
trayectoria con la mayor precisién y
estabilidad. Se observa que el dngulo
que describe el vehiculo controlado
por el NMPC estd mds préximo al dn-
gulo objetivo en pricticamente todo
el trazado. Resalta esta discrepancia
en las zonas en las que la curvatura es
mayor y se alcanzan mayores dngulos
de deslizamiento. En la figura 5b-d se
describen el dngulo de la direccién, el
de deslizamiento del vehiculo y el de
deslizamiento del neumitico delantero
del controlador NMPC vy del contro-
lador MPC, que son parecidos, ya que
la magnitud y la forma que describen
es parecida. Aunque justamente las pe-
quefias fluctuaciones existentes entre
ambos controladores se dan en el ran-
go de 6-8 segundos, cuando se ejecuta
la dltima curva de la maniobra. Una
vez superada dicha zona, se observa
que las oscilaciones se van atenuando
con el tiempo, y son mayores las del
MPC, lo que también demuestra una
peor capacidad de corregir el error en
el régimen permanente. En definitiva,
el rendimiento de ambos controladores
es muy parecido, ya que ambos pueden

Parametros del controlador \_Ialor P L Valor (unidades)
(unidades) ensayo

variable de control

Periodo de muestreo T, =0,01s HEleeEe e v=36km/h
vehiculo
. Sy N. =10 Coeficiente de —
Horizonte de prediccion p adherencia nw=2038
Horizonte de control N,
Coeficiente de ponderacion posicion 4, =5
longitudinal x
Coeficiente de ponderacion posicion g, =5
lateral y
Coeficiente de pc_)nderacic’)n angulo q, =16
guinada
Coeficiente de ponderacion de la r=1

Tabla 2. Parametros del controlador y caracteristicas del escenario 1

seguir la trayectoria con precisién y
fluidez, aunque queda demostrado que
en zonas en las que se alcanzan mayo-
res aceleraciones laterales y mayores
dngulos de deslizamiento, el controla-

dor NMPC se ajusta mejor, debido a
su capacidad de modelizar con mayor
precisién el comportamiento del neu-
matico.

NMPC

MPC Referencia ]

30 A0 50 60 1

100 120 140 160 180

X (m)
| NMPC MPC Referencia

T T

1 1

12 15 18
T T

L 1 ]
12 15 18
T T

1 1 ]
12 15 18
T T

" i i
12 15 18

t(s)

Figura 5. Comparacion del seguimiento como referencia lateral.

a) Comparacion del angulo de guifiada del vehiculo;
b) Comparacion del angulo de direccion delantero;
¢) Comparacion del angulo de deslizamiento, y

d) Comparacion del angulo de deslizamiento del neumatico.
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Escenario 2: simulacién a velo-
cidad constante elevada y coefi-
ciente de adherencia alto

En el escenario 1 se ha demostrado
que, ante unas condiciones de favo-
rables, ambos controladores exhiben
una elevada precisiéon a la hora de
realizar el seguimiento del camino de
referencia. Es ligeramente superior el
NMPC. En el presente escenario, se
eleva la velocidad a v=20 m/s y se man-
tiene el coeficiente de adherencia a
=0,9. La maniobra que se ejecuta sigue
siendo el cambio de carril. Los contro-
ladores que se comparan siguen sien-
do los mismos, un NMPC basado en
el modelo de Dugoff de neumdtico y
un MPC clésico lineal. Se debe imple-
mentar unos cambios en los parime-
tros del controlador. En la tabla 3 se
recogen los pardmetros de los contro-
ladores y del ensayo:

Al haberse incrementado la veloci-
dad longitudinal al doble que en el es-
cenario 1, la capacidad global de seguir
la referencia de ambos controladores
disminuye. En la figura 6 se observa
que ninguno de los controladores pue-
de seguir la referencia lateral con sufi-
ciente exactitud, y es el NMPC el que
muestra mayor precision. Esto puede
verse en el tramo entre 25 y 60 metros,
en el que la trayectoria del controlador
NMPC se encuentra més préxima a la
maniobra objetivo que el MPC. Tam-
bién el controlador no lineal puede
corregir el error en régimen perma-
nente. Se observa en el tramo de los
100 metros hasta el final del recorrido,
donde el NMPC corrige perfectamen-
te la trayectoria y el MPC no puede
hacerlo completamente.

Por otro lado, en la figura 6a se
puede visualizar la capacidad de segui-
miento de la referencia del dngulo de
guifiada de los controladores. En este
caso, las discrepancias entre ambos son
menores, y es el controlador no lineal
NMPC el que se queda mis préximo.
Pero, a diferencia de lo ocurrido en el
seguimiento de la referencia lateral, los
dos controladores si pueden corregir el
error del régimen permanente. Esto
puede verse a partir de los 4,5 segun-
dos de simulacién, cuando se amorti-
guan las oscilaciones y se demuestra
que el sistema tiene una respuesta
estable. En la figura 6b-d, se observa
la evolucién de los dngulos de direc-
ci6n, deslizamiento de vehiculos y del
neumdtico, respectivamente. Ambos

Parametros del controlador \_Ialor PG Valor (unidades)
(unidades) ensayo

Periodo de muestreo T, =0,01s Velocn’jad et v="72km/h
vehiculo
. Sy N. =20 Coeficiente de —
Horizonte de prediccion P adherencia ©nw=209
Horizonte de control N.=3
Coeficiente de ponderacion en =1
Y o qy =
posicion longitudinal
Coeficiente.d.e’ ponderacion en a = 15
posicion lateral
Coeficiente de pop-deraci()n del dp = 30
angulo guifnada
Coeficiente de ponderacion de la _
; 7= 2,9
variable de control

Tabla 3. Parametros del controlador y caracteristicas del escenario 2

describen curvas muy similares. La
mayor diferencia entre dichas curvas
se observa en el primer segundo de la
simulacién, coincidiendo con el inicio
de la maniobra del cambio de carril y

cuando la aceleracién lateral del vehi-
culo se ve incrementada. Este efecto
se traduce en un aumento del dngulo
de deslizamiento lateral del neumaiti-
co, y se alcanzan valores que se quedan

NMPC

M

PC Referencia l

T T T

NMPC MFPC Referencia
20 T T T T T
16+ 0
12 .
8 4
4 .
D
=10 —
<
4 .
Y 4
-12 4
-16 4
220 1
7.5 9
T -
Sl ]
= .
i .
7.5 9
T
i 3
7.5 9
6 T
4 4
2 .
0
2 -
4 H
W " i L L L
0 1.5 3 +5 6 7.5 9

t(s)

Figura 6. Comparacion del seguimiento lateral de la referencia.

a) Comparacion del angulo de guifiada del vehiculo;
b) Comparacion del angulo de direccion delantero;
¢) Comparacion del angulo de deslizamiento, y

d) Comparacion del angulo de deslizamiento del neumatico.
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fuera de la zona lineal de trabajo de este,
lo que justifica el mejor rendimiento del
controlador NMPC frente al MPC.

CONCLUSIONES

En este articulo se disefia un algoritmo
de control predictivo basado en el mo-
delo no lineal del neumdtico. Este per-
mite reducir el error de célculo de las
fuerzas de los neumdticos del vehiculo
ante condiciones adversas, como zonas
con muy baja adherencia, elevadas velo-
cidades, etc.., y se evita el deterioro en la
capacidad de seguimiento de maniobras
bajo dichas condiciones. En el contro-
lador no lineal propuesto, las fuerzas se
caracterizan mediante funciones no li-
neales basadas en el modelo de Dugoff,
en vez de hacer uso de la aproximacién
del comportamiento lineal del neums-
tico, el cual, segin se comenta previa-
mente, presenta ciertas limitaciones en
su aplicacién. Durante el proceso de
disefio del controlador, se hace uso de
la expansién en series de Taylor amplia-
mente usada en el proceso de linealiza-
cién de sistemas complejos. Esto es de-
terminante para la construccién de las
matrices caracteristicas que permiten
la resolucién del problema de optimi-
zacion. Posteriormente, se lleva a cabo
un proceso de discretizacion del sistema
mediante el método de Euler. Para po-
der validar el potencial del controlador
propuesto, se llevan a cabo una serie de
simulaciones bajo distintas condiciones
y se compara con el controlador lineal
clisico MPC. El primer escenario con-
siste en realizar la maniobra de cambio
de carril a una velocidad baja y un coe-
ficiente de adherencia alto. Ambos con-
troladores muestran una gran precision
a la hora de realizar el seguimiento de
la trayectoria, y el controlador no lineal
es ligeramente superior. En el segundo
escenario se duplica la velocidad y se
mantiene la trayectoria y la adheren-
cia. Aqui ambos controladores pierden
rendimiento; muestra mayor estabili-
dad y precisién el controlador no lineal
NMPC. Como trabajo futuro, se pro-
pone ampliar la cantidad de ensayos que
realizar, variando las condiciones de tra-
bajo. Esto incluye escenarios que simu-
len conduccién en superficies con bajo
coeficiente de adherencia, velocidad
variable, etc., ademds de probar otras
maniobras tipicas de ensayos como el
camino senoidal o de serpiente o un ca-
mino aleatorio que incluya trazados con
diferentes curvaturas.
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