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Abstract
The evolution of technology towards the automation of 
industrial processes and the advances in interconnectivity 
have given way to what is known today as industry 4.0. 
These advances are of particular interest in the area of 
predictive maintenance of machines, where machine learning 
techniques have considerably improved condition diagnosis 
of machinery. This is of special importance in the railway 
industry, where maintenance constitutes an important part 
of its operating costs. This paper studies the application of 
machine learning techniques to vibration signals originating 
from a railway axle, tested on a railway test bench, through 
support vector machine algorithms for fault detection. A 
feature selection scheme composed of a series of sensitivity 
analyses is proposed in order to determine the best signal 
features for classification. The subsequent hyperparameter 
optimization proposed consists of a series of sensitivity 
analyses in order to determine the values of each parameter 
that result in a classifier with the most accuracy. Lastly, the 
effect of the location of the sensors in the axle from which the 
vibration signals are obtained is studied in order to determine 
their most apt configuration.
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Resumen
La evolución tecnológica hacia la automatización de procesos indus-
triales y los avances en la interconectividad han dado lugar a lo que co-
nocemos como Industria 4.0. Un área particularmente beneficiada por 
estos avances tecnológicos es el mantenimiento predictivo de máqui-
nas, donde la implementación de técnicas de aprendizaje automático 
ha mejorado considerablemente el diagnóstico de la condición de las 
mismas. Esto es especialmente sensible en el sector ferroviario, don-
de el mantenimiento constituye una parte importante de los costes de 
operación. En el presente trabajo se estudiará la aplicación de técnicas 
de aprendizaje automático a señales vibratorias procedentes de un eje 
ferroviario testeado en un banco de ensayos mediante algoritmos de 
máquinas de soporte vectorial para la detección de fallos. Con el pro-
pósito de obtener un clasificador preciso, se propone una selección de 
cualidades que consiste en una serie de análisis de sensibilidad con el 
propósito de determinar las mejores cualidades para la clasificación. 
La posterior optimización de hiperparámetros propuesta se constituye 
por una serie de análisis de sensibilidad, para determinar los valores 
de cada parámetro del clasificador que generan clasificadores con 
mayor precisión. Por último, se estudiará el efecto de la localización de 
los sensores de los que provienen las señales vibratorias para deter-
minar su configuración más adecuada.

Palabras clave  
Máquina de soporte vectorial, monitorización de la condición, vibraciones, 
sistemas ferroviarios.
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1. Introduction
The connectivity of today’s world 
penetrates all aspects of society where 
efficiency and the handling of data 
are of importance. This trend has 
manifested itself on an industrial level 
as the well-known industry 4.0, which 
is characterized by the automation 
of not only physical processes, but of 
intellectual processes as well, through 
the processing of large quantities of 
data (big data). Machine learning 
presents itself as a useful tool in the 
processing of this data. In line with 
this trend, predictive maintenance 
measures have been implemented 
through automatic classifiers capable 
of establishing condition monitoring 
systems of machinery in an efficient 
manner (Lee et al., 2014).

The railway sector stands out as 
an area of industry with potential to 
greatly benefit from these advances. 
Maintenance of railway infrastructure 
and rolling stock accounts for a 

binary classifiers, although multi-class 
classification can be achieved through 
codification techniques (Cristianini, 
2000). SVMs have been shown to give 
good results in bearing fault detection 
through the classification of vibration 
signals (Rubio Alonso, s. f.; Sun & Liu, 
2023).

In order to apply these techniques 
to vibration signals a previous signal 
feature selection must be performed 
in order to select the features that 
properly describe the condition of 
rolling stock. With this purpose in 
mind, a series of 21 signal features 
are proposed in time and frequency 
domain, and various classifiers are 
compared in order to determine the 
most apt features for classification. 
Then, the hyperparameters of the 
SVM are tuned in order to determine 
their values that are better suited 
for the classification of the selected 
features. A classification model and a 
set of signal features capable of fault 

significant part of its operating costs. 
Predictive maintenance using machine 
learning methods arises as a natural 
solution for the reduction of costs 
when the tendency of technological 
evolution of the sector and the recent 
advances in machine learning are 
considered (Bustos et al., 2021).

In consequence, the main objective 
of this work is the application of 
machine learning techniques for 
fault detection in railway rolling 
stock. In particular, Support Vector 
Machine (SVM) (Cortes & Vapnik, 
1995) algorithms are used for the 
classification of vibration signals 
coming from a bogie test bench (Bustos 
et al., 2019) with defects of varying 
severity. These machine learning 
algorithms are based on the separation 
of observations in a space of high 
dimension using a hyperplane, with 
reasonable computational cost thanks 
to functions commonly referred to 
as kernels. SVMs are, fundamentally, 
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manner (Lee et al., 2014).

The railway sector stands out as 
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binary classifiers, although multi-class 
classification can be achieved through 
codification techniques (Cristianini, 
2000). SVMs have been shown to give 
good results in bearing fault detection 
through the classification of vibration 
signals (Rubio Alonso, s. f.; Sun & Liu, 
2023).

In order to apply these techniques 
to vibration signals a previous signal 
feature selection must be performed 
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to functions commonly referred to 
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detection of parts of the signal with 
relevant information (Antoni, 2006). 
The spectral kurtosis spectrum has 
been shown to give good results 
in fault detection using vibration 
signals due to its ability to separate 
noise from characteristic impulses of 
faults in rotary machines (Antoni & 
Randall, 2006). In total, 21 features 
are considered (12 in time domain, 5 
from the PSD spectrum and 3 from 
the spectral kurtosis spectrum).

Once the features are defined, 
a sensitivity analysis is carried 
out to evaluate their aptitude in 
classification. This analysis consists 
of training several classifiers with 
each feature individually and 
varying their hyperparameters to 
take their effect into account. The 
purpose is to obtain a measure of the 
aptitude of each individual feature 
independent of the parameters of 
the final classifier. The sensitivity 
analyses are carried out with four 
hyperparameters and four kernels, 
whose range of values studied can be 
seen in table 3.

In order to identify the 
hyperparameters that generate 
classifiers with high accuracy, a 
subsequent hyperparameter study is 
carried out. This study consists of a 
series of sensitivity analyses, similar 
to those carried out for the feature 
selection, according to table 3, with 
the distinction of using a classifier 
trained with all the previously 
selected features.

2.4. Study of sensor position
The location of the measurement 
sensor on the axle affects the 
vibration signals obtained and, 
therefore, it also affects the values of 

detection in railway axles is meant to 
be obtained as a result of the previous 
procedures. Finally, the effect of the 
position of the sensors on the axle on 
classification is studied in order to 
determine its effect in the validity of 
the results.

2. Methodology
2.1. Experimental setup
The vibration signals utilized come 
from a mechanical system which 
consists of a bogie test bench where 
a Y-21 Cse model bogie is mounted 
on two pairs of rollers. Hydraulic 
cylinders are used to activate the 
loading mechanism by means of a 
chain. The measurement system 
consists of three accelerometers 
mounted on each side of the axle 
box: One for the vertical direction, 
one for the axial direction and one 
for the direction of movement as can 
be seen in figure 1.

The axle defects are induced 
through radial machining at the 
centre of the axle. Four defect levels 
are defined ranging from no defect 
to a depth of 15 mm as can be seen 
in table 1.

The experimental tests consisted 
of rolling the front bogie wheels on 
the two rollers of the test bench, 
which dragged the wheels forward 
through friction (figure 1). The tests 
were carried out on the same bogie 
under similar operating conditions: 
at a speed of 50 km/h and an external 
load of 10 metric tons. The tests 
began with a healthy axle and the 
rest of the defect levels proposed in 
table 1 were progressively induced. 
The vibration signals were obtained 
sequentially during the course of 
each test.

2.2. Signal acquisition 
The vibration signals used 
correspond to the acceleration 
signals obtained by the vertical 
accelerometers located on the axle 
boxes of the left and right-hand 

side of the front axle (fig. 1). Signals 
were recorded at a sampling rate 
of 12,800 Hz, up to a total of 
16,384 samples (214), resulting in an 
acquisition time of 1.28 seconds. In 
this study, a total of 592 vibration 
records (9.7 million samples) were 
used, which include the four defect 
levels and the two sides of the axle:

 •136 signals from the healthy axle 
(half on the right-hand side and the 
other half on the left-hand side).

 •104 signals with defect 1 (half on 
the right-hand side and the other 
half on the left-hand side).

 •144 signals with defect 2 (half on 
the right-hand side and the other 
half on the left-hand side).

 •208 signals with defect 3 (half on 
the right-hand side and the other 
half on the left-hand side).

2.3. Classifier tests 
The accuracy of a classifier 
fundamentally depends on the ability 
of the input data to differentiate 
between the different classes. 
When considering fault detection 
through stationary vibration signals, 
statistical measures are commonly 
used as signal features, treating 
the signals as random variables 
(Randall, 2011). In this study, these 
measures are made up of a series of 
13 statistical parameters, obtained 
from the vibration signals and the 
frequency spectrum, whose detailed 
descriptions are laid out in table 2.

For the frequency domain 
features, the power spectral density 
(PSD) spectrum is used. In addition, 
features of the spectral kurtosis 
spectrum are evaluated; a tool that 
allows for the filtering of regions 
with Gaussian noise, facilitating the 

Figure 1: Bogie test bench configuration and measurement system.

Class Depth
(mm)

Healthy axle 0

Defect 1 5.7

Defect 2 10.9

Defect 3 15

Table 1. Depth of defects
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its features. In order to identify the 
significance of this effect, a study 
of sensor location is carried out. 
To perform this study, the analyses 
described in the previous section are 
carried out concurrently both for 
signals taken from the left side of the 
axis (LHS signal set) and from the 
right side (RHS signal set).
In addition, the possibility of 
combining the signals in two different 
configurations is considered:

1.  Mixed sides (MS signal set): a 
combination of signals from the 
left and right-hand side of the axle 
is used, without any feature that 
directly identifies them as such.
2. Identified mixed sides (IMS 
signal set): a combination of signals 
from the left and right-hand side 
of the axle is used, incorporating 
the sensor from which each signal 
comes from (LHS or RHS) as an 
additional feature.

This last study is carried out during 
the tuning of hyperparameters, 
meaning that the classifiers trained 
on these last two signal sets use the 
same features for classification as the 
classifiers trained with the signals 
from the LHS and RHS signal sets.

3. Results
Once the vibration signals have been 
obtained and after the necessary 
feature extraction has been 
performed, the classifier tests are 
carried out. The feature extraction 
and the implementation of the SVM 
algorithm are implemented in the 
commercial program Matlab, using 
its Classification Learner application 
from the Statistics and Machine 
Learning Toolbox.

3.1. Feature selection
The sensitivity analysis for the 
feature selection is repeated for four 
hyperparameters and four kernels, 
resulting in 16 accuracy values for 
each feature studied. Although 
absolute variation in accuracy is 
observed among different tests, no 
significant variation is seen for the 
relative values between features with 
equal hyperparameters. That is, the 
different analyses gave rise to the same 
set of selected features.

For simplicity, and due to the 
similarity of results, the analysis with 
varying box constraint is discussed as 

Table 2. Description of the features studied

Hyperparameter Studied Values

Codification One vs all, one vs one, all pairs, binary 
complete

Box constraint 10-3, 10-2, 10-1, 1, 101, 102 y 103

Kernel scale 10-3, 10-2, 10-1, 1, 101, 102 y 103

Cross validation K-fold 5, 10, 20, 25, 30, 40 y 50

Kernel Linear, quadratic, cubic, Gaussian

Table 3. Description of the sensitivity analyses

it is the most representative case. The 
conclusions obtained can, however, 
be extrapolated to the rest of the 
analyses. This test was carried out 
with a kernel scale value of 1, one vs. 
one codification and cross validation 
with a k-fold value of 5. The results 
presented in tables 4 and 5 correspond 
to the average accuracy of the four 
kernels studied for the LHS and RHS 
sets respectively.

In tables 4 and 5 it can be seen that 
the features associated with the PSD 
are considerably better performant 
for classification than the rest of the 
features, corroborating the results 

obtained in previous studies (Bustos 
et al., 2019). Among the features of 
the PSD, the RMS value stands out, 
which achieves maximum accuracy 
in all cases. Taking the high range of 
hyperparameters studied into account, 
it is considered appropriate to conclude 
that the RMS value of the PSD will be 
highly significant, regardless of the 
hyperparameters of the final classifier.

Among the time domain features, 
the following stand out: the RMS 
value, the variance and standard 
deviation, and the skewness. It is 
possible that the high performance 
of the RMS value is associated with 
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The location of the measurement 
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vibration signals obtained and, 
therefore, it also affects the values of 

detection in railway axles is meant to 
be obtained as a result of the previous 
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position of the sensors on the axle on 
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determine its effect in the validity of 
the results.
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were recorded at a sampling rate 
of 12,800 Hz, up to a total of 
16,384 samples (214), resulting in an 
acquisition time of 1.28 seconds. In 
this study, a total of 592 vibration 
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Figure 1: Bogie test bench configuration and measurement system.

Class Depth
(mm)

Healthy axle 0

Defect 1 5.7

Defect 2 10.9

Defect 3 15

Table 1. Depth of defects
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its features. In order to identify the 
significance of this effect, a study 
of sensor location is carried out. 
To perform this study, the analyses 
described in the previous section are 
carried out concurrently both for 
signals taken from the left side of the 
axis (LHS signal set) and from the 
right side (RHS signal set).
In addition, the possibility of 
combining the signals in two different 
configurations is considered:

1.  Mixed sides (MS signal set): a 
combination of signals from the 
left and right-hand side of the axle 
is used, without any feature that 
directly identifies them as such.
2. Identified mixed sides (IMS 
signal set): a combination of signals 
from the left and right-hand side 
of the axle is used, incorporating 
the sensor from which each signal 
comes from (LHS or RHS) as an 
additional feature.

This last study is carried out during 
the tuning of hyperparameters, 
meaning that the classifiers trained 
on these last two signal sets use the 
same features for classification as the 
classifiers trained with the signals 
from the LHS and RHS signal sets.

3. Results
Once the vibration signals have been 
obtained and after the necessary 
feature extraction has been 
performed, the classifier tests are 
carried out. The feature extraction 
and the implementation of the SVM 
algorithm are implemented in the 
commercial program Matlab, using 
its Classification Learner application 
from the Statistics and Machine 
Learning Toolbox.

3.1. Feature selection
The sensitivity analysis for the 
feature selection is repeated for four 
hyperparameters and four kernels, 
resulting in 16 accuracy values for 
each feature studied. Although 
absolute variation in accuracy is 
observed among different tests, no 
significant variation is seen for the 
relative values between features with 
equal hyperparameters. That is, the 
different analyses gave rise to the same 
set of selected features.

For simplicity, and due to the 
similarity of results, the analysis with 
varying box constraint is discussed as 

Table 2. Description of the features studied

Hyperparameter Studied Values

Codification One vs all, one vs one, all pairs, binary 
complete

Box constraint 10-3, 10-2, 10-1, 1, 101, 102 y 103

Kernel scale 10-3, 10-2, 10-1, 1, 101, 102 y 103

Cross validation K-fold 5, 10, 20, 25, 30, 40 y 50

Kernel Linear, quadratic, cubic, Gaussian

Table 3. Description of the sensitivity analyses

it is the most representative case. The 
conclusions obtained can, however, 
be extrapolated to the rest of the 
analyses. This test was carried out 
with a kernel scale value of 1, one vs. 
one codification and cross validation 
with a k-fold value of 5. The results 
presented in tables 4 and 5 correspond 
to the average accuracy of the four 
kernels studied for the LHS and RHS 
sets respectively.

In tables 4 and 5 it can be seen that 
the features associated with the PSD 
are considerably better performant 
for classification than the rest of the 
features, corroborating the results 

obtained in previous studies (Bustos 
et al., 2019). Among the features of 
the PSD, the RMS value stands out, 
which achieves maximum accuracy 
in all cases. Taking the high range of 
hyperparameters studied into account, 
it is considered appropriate to conclude 
that the RMS value of the PSD will be 
highly significant, regardless of the 
hyperparameters of the final classifier.

Among the time domain features, 
the following stand out: the RMS 
value, the variance and standard 
deviation, and the skewness. It is 
possible that the high performance 
of the RMS value is associated with 
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Table 4. Results for the sensitivity analysis for feature selection using LHS 
signal set.

Table 5. Results for the sensitivity analysis for feature selection using RHS 
signal set

the information it provides about the 
signal power, as it can be seen in tables 
4 and 5 by the correlation between the 
accuracies of the power and the RMS 
value. The variance and standard 
deviation also stand out, possibly 
due to the information they provide 
about the variability of the signal 
and, therefore, the interference of 
the vibrations generated by the fault. 
The correlation between their values 
is evident since one is mathematically 
defined as the square root of the other 
(table 2). Finally, the skewness value 
is particularly effective for classifying 
signals from the RHS set, although it 
is not significant in the LHS set. 

In light of the results analysed 
above, six features were selected for 
classification with high accuracy and 
without correlation between each 
other:

• Peak value of the time signal.
• RMS value of the time signal.
• Variance of the time signal.
• Skewness of the time signal.
• RMS of the power spectrum.

• Peak value of the power spectrum

3.2. Tuning of Hyperparameters
Similar to the studies carried out 
for the feature selection, sensitivity 
analyses are performed for four 
hyperparameters and four kernels. In 
this case the classifiers are trained with 
the set of features previously selected. 
Additionally, the hyperparameters for 
the MS and IMS sets are also tuned.

Little variation in accuracy can be 
seen for different codifications, as can 
be seen in figure 2. The maximum 
accuracy is obtained with different 
kernels, depending on the training 
set (LHS, RHS, LM or LMI). Their 
distribution relative to different 
kernels, however, remains relatively 
constant between signal sets except 
in the case of the LHS set, in which 
an increase in the variability of the 
quadratic and Gaussian kernels is 
observed. 

Figure 3 shows how the signal 
accuracies of the LHS and RHS 
sets vary almost identically with 

the box constraint, reaching higher 
maximum accuracies in the RHS set. 
The accuracy of the MS and IMS sets 
behave similarly, with the IMS set 
showing marginally higher accuracies.

Figure 3 also shows that small 
values of the box constraint give 
comparatively low accuracy values, 
with the linear and Gaussian kernels 
being particularly susceptible to 
this effect. As the box constraint 
increases, all kernels converge to a 
similar accuracy value, beginning to 
converge at a box constraint value of 
approximately 10-2 for the quadratic, 
linear and cubic kernels and a box 
constraint value of approximately 1 for 
the Gaussian kernel.

In similarity to the case of the box 
constraint, figure 4 shows how small 
values of the kernel scale result in 
low accuracy values. This behaviour 
holds for all kernels, except for 
the linear kernel, which maintains 
comparatively high accuracy values. 
It can be seen that the accuracies 
do not converge, but rather reach a 
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in the case of the LHS set, in which 
an increase in the variability of the 
quadratic and Gaussian kernels is 
observed. 

Figure 3 shows how the signal 
accuracies of the LHS and RHS 
sets vary almost identically with 

the box constraint, reaching higher 
maximum accuracies in the RHS set. 
The accuracy of the MS and IMS sets 
behave similarly, with the IMS set 
showing marginally higher accuracies.

Figure 3 also shows that small 
values of the box constraint give 
comparatively low accuracy values, 
with the linear and Gaussian kernels 
being particularly susceptible to 
this effect. As the box constraint 
increases, all kernels converge to a 
similar accuracy value, beginning to 
converge at a box constraint value of 
approximately 10-2 for the quadratic, 
linear and cubic kernels and a box 
constraint value of approximately 1 for 
the Gaussian kernel.

In similarity to the case of the box 
constraint, figure 4 shows how small 
values of the kernel scale result in 
low accuracy values. This behaviour 
holds for all kernels, except for 
the linear kernel, which maintains 
comparatively high accuracy values. 
It can be seen that the accuracies 
do not converge, but rather reach a 
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Figure 2. Comparison between sensitivity analyses for codification.

Figure 3. Comparison between sensitivity analyses for box constraint.

maximum with kernel scale values 
between 1 and 10.

Figure 5 shows how, as with the 
codification case, there appears to be 
no significant variation in accuracy 
values between high and low values 
of the k-fold. On the other hand, the 
accuracy remains relatively constant, 
oscillating around an average value. 
The quadratic kernel has greater 

variability, while the Gaussian kernel 
is the most constant.

The linear kernel stands out for its 
high accuracy relative to other kernels 
in most cases, with the exception of the 
MS set, in which the lowest accuracies 
are obtained. The cubic kernel obtains 
comparatively high accuracy values 
for the LHS and RHS signal sets, 
although low accuracy values are 

obtained for the MS and IMS signal 
sets. The quadratic kernel behaves 
in the opposite way, obtaining low 
accuracy values for the LHS and RHS 
signal sets and high accuracy values 
for the MS and IMS signal sets. The 
Gaussian kernel, on the other hand, 
does not vary significantly relative 
to other kernels. This difference in 
behaviour between signal sets seems 
to indicate that the appropriate kernel 
and hyperparameter values depend on 
the set of signals used for training, as 
was the case with the feature selection.

3.3. Study of sensor position
In figure 6, as an illustrative 
example, confusion matrices for the 
classifiers corresponding to each 
sensor configuration are presented 
and discussed for the case of one vs 
one coding, box constraint of 100, 
kernel scale of 1, cross validation 
with k-fold value of 5 and linear 
kernel.

Figure 6 shows how the main loss of 
accuracy for the classifier with the LHS 
set can be interpreted as the confusion 
between the healthy axle (ES) and 
defect 1 (D1) classes. In the case of 
the RHS set, the loss of accuracy is 
due to the confusion between defect 2 
(D2) and defect 3 (D3). The increase in 
accuracy could possibly be explained 
by the high classification ability of 
the skewness of the time signal for 
the RHS signal set, as discussed in 
the feature selection section. The two 
matrices are mainly diagonal, although 
the RHS set classifier achieves the 
highest accuracy. It can be deduced, 
therefore, that the behaviour of the 
signals during classification depends 
on the location of the sensor.

The classifier for the MS signal 
set has the lowest performance of 
the four cases. Figure 6 shows how, 
in addition to the confusion between 
the healthy axle and defect 1, there is 
some confusion between defect 2 and 
defect 3. A possible explanation for 
the decrease in accuracy is that the 
combination of the LHS and RHS sets 
gives rise to a set of signals without 
a clear distinction between classes, 
possibly due to the differences between 
the separation of classes of the LHS 
and RHS sets previously discussed.

Lastly, figure 6 shows how the 
IMS signal set classifier behaves 
almost identically to the LHS 
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Figure 4. Comparison between sensitivity analyses for Kernel scale.

Figure 5. Comparison between sensitivity analyses for cross validation k-fold.

signal set classifier. Again, the 
main cause of the loss of accuracy 
is due to the confusion between 
the healthy axle and defect 1. 
This seems to indicate that the 
identification of the signals is 
effective in eliminating the effect 
that generates the loss of accuracy 
in the case of the MS signal set.

4. Conclusions
The main objective of this work was 
the application of machine learning 
techniques, through the use of support 
vector machine algorithms, for the 
classification of vibration signals for the 
fault detection in railway rolling stock. 
For this purpose, several vibration 
signals were recorded, coming from 

a bogie test bench where tests were 
carried out with healthy axles and 
with different levels of defects. Once 
the signals were recorded, a series of 
sensitivity analyses were carried out to 
select features and hyperparameters 
capable of classifying the signals 
effectively. In light of the results 
obtained, it can be concluded that the 
methodology followed is capable of 
generating high-accuracy classifiers: 
in some classifiers, accuracies of 100% 
have been achieved.

With regards to the feature 
selection, it is concluded that the 
best features for classification are 
those associated with the spectral 
power density spectrum. It is also 
concluded that the set of features 
to be selected is independent 
of the hyperparameters of the 
final classifier. However, they do 
depend on the set of signals used 
in training, as has been seen with 
the difference in accuracy provided 
by the signal skewness between the 
sets on the left and right-hand side 
of the axle.

In relation to the tuning of 
hyperparameters, it is concluded that 
there is a strong relationship between 
the appropriate hyperparameters and 
the kernel used. Some variation is also 
observed for different sets of signals: 
the accuracies of classifiers seem to 
be independent of the values of both 
the codification and the k-fold of the 
cross-validation, with the kernel and 
signal set used in training being the 
dominant factors in these cases. It can 
also be concluded that both very low 
values of the box constraint and very 
low or high values of the kernel scale 
result in classifiers with low accuracy 
in general. After analysis, it is deduced 
that an appropriate value for these 
parameters ranges between 10-1 and 
102.

With regards to the analysis of 
the sensor location, it is concluded 
that the location of the sensors plays 
an important role in fault detection 
through vibration signals since it 
has an important impact on the 
feature selection, hyperparameter 
tuning and classification. It is also 
noted that mixing signals originating 
from different sensors without 
discriminating between signal sets 
results in a less accurate classifier 
overall, although this effect can be 
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somewhat mitigated by incorporating 
an additional feature that identifies 
which sensor each signal originates 
from.
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